【題目】已知點(x,y)是區(qū)域 , (n∈N*)內(nèi)的點,目標(biāo)函數(shù)z=x+y,z的最大值記作zn . 若數(shù)列{an}的前n項和為Sn , a1=1,且點(Sn , an)在直線zn=x+y上.
證明:數(shù)列{an﹣2}為等比數(shù)列
【答案】解:∵目標(biāo)函數(shù)對應(yīng)直線l:z=x+y,
區(qū)域,(n∈N*)表示以x軸、y軸和直線x+2y=2n為三邊的三角形,
∴當(dāng)x=2n,y=0時,z的最大值zn=2n
∵(Sn , an)在直線zn=x+y上
∴zn=Sn+an , 可得Sn=2n﹣an ,
當(dāng)n≥2時,可得an=Sn﹣Sn﹣1=(2n﹣an)﹣[2(n﹣1)﹣an﹣1]
化簡整理,得2an=an﹣1+2
因此,an﹣2=(an﹣1+2)﹣2=(an﹣1﹣2)
當(dāng)n=1時,an﹣2=a1﹣2=﹣1
∴數(shù)列{an﹣2}是以﹣1為首項,公比q=的等比數(shù)列;
【解析】根據(jù)線性規(guī)劃原理,可得z的最大值zn=2n,從而得到Sn=2n﹣an . 運用數(shù)列前n項和Sn與an的關(guān)系,算出2an=an﹣1+2,由此代入數(shù)列{an﹣2}再化簡整理,即可得到{an﹣2}是以﹣1為首項,公比q=的等比數(shù)列;
【考點精析】解答此題的關(guān)鍵在于理解等比關(guān)系的確定的相關(guān)知識,掌握等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進(jìn)行判斷.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動點與兩定點和連線的斜率之積等于.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)直線: ()與軌跡交于、兩點,線段的垂直平分線交軸于點,當(dāng)變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出50個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推.要求計算這50個數(shù)的和.將右邊給出的程序框圖補充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最大值和最小值;
(2)設(shè)曲線與軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場一年購進(jìn)某種貨物900噸,每次都購進(jìn)x噸,運費為每次9萬元,一年的總存儲費用為9x萬元.
(1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?
(2)要使一年的總運費與總存儲費用之和不超過585萬元,則每次購買量在什么范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,F(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎。如果前三道題都答錯,就不再答第四題。某同學(xué)進(jìn)入決賽,每道題答對的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司一年經(jīng)銷某種商品,年銷售量400噸,每噸進(jìn)價5萬元,每噸銷售價8萬元.全年進(jìn)貨若干次,每次都購買x噸,運費為每次2萬元,一年的總存儲費用為2x萬元.
(1)求該公司經(jīng)銷這種商品一年的總利潤y與x的函數(shù)關(guān)系;
(2)要使一年的總利潤最大,則每次購買量為多少?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com