【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經(jīng)榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓,稱圓心在坐標(biāo)原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明在區(qū)間內(nèi)有且僅有唯一實根;
(2)記在區(qū)間內(nèi)的實根為,函數(shù),若方程在區(qū)間有兩不等實根,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列中存在,其中,,,,及均為正整數(shù),且(),則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列的前項和,求證:是“數(shù)列”;
(2)若是首項為1,公比為的等比數(shù)列,判斷是否是“數(shù)列”,說明理由;
(3)若是公差為()的等差數(shù)列且(),,求證:數(shù)列是“數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”.類似的,我們在平面向量集上也可以定義一個稱“序”的關(guān)系,記為“”.定義如下:對于任意兩個向量,“”當(dāng)且僅當(dāng)“”或“”。按上述定義的關(guān)系“”,給出如下四個命題:
①若,則;
②若,則;
③若,則對于任意;
④對于任意向量,若,則。
其中真命題的序號為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,的解集為時,求實數(shù)的值;
(2)若對任意,存在,使,求實數(shù)的范圍;
(3)集合,若,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com