如果函數(shù)f(x)的定義域?yàn)閧x|x∈R+},且f(x)為增函數(shù),f(xy)=f(x)+f(y).
(1)證明:f(
xy
)=f(x)-f(y);
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍.
分析:(1)結(jié)合抽象表達(dá)式用x=
x
y
•y即可將f(x)轉(zhuǎn)化成f(x)=f(
x
y
•y)=f(
x
y
)+f(y)
,即可證得f(
x
y
)=f(x)-f(y);
(2)首先通過賦值可求出2=f(9),進(jìn)而對不等式進(jìn)行轉(zhuǎn)化,然后結(jié)合函數(shù)y=f(x)是定義在(0,+∞)上的單調(diào)性,結(jié)合變形后的抽象函數(shù)即可獲得變量a的要求,進(jìn)而問題即可獲得解答.
解答:解:(1)∵f(x)=f(
x
y
•y)=f(
x
y
)+f(y)
,
f(
x
y
)=f(x)-f(y)

(2)∵f(3)=1,f(a)>f(a-1)+2,
∴f(a)-f(a-1)>2,
f(
a
a-1
)>2=f(3)+f(3)=f(9)
,
∵f(x)是(0,+∞)上的增函數(shù),
a
a-1
>9
解得a<
9
8

又a>0,a-1>0,
1<a<
9
8
,
∴a的取值范圍是1<a<
9
8
點(diǎn)評:本題考查的是抽象函數(shù)及其應(yīng)用的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了定義域優(yōu)先的原則、特值的思想、轉(zhuǎn)化的思想以及計(jì)算和解不等式組的能力.值得同學(xué)們體會(huì)和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個(gè)為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰為51元?(3分)
(2)設(shè)一次訂購量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(3)如果訂購量為x個(gè),該廠獲得的利潤為L,寫出函數(shù)L=g(x)的表達(dá)式;當(dāng)銷售商一次訂購零件量x∈[50,500]時(shí),要使該廠獲得的利潤最大,只有銷售商一次訂購多少零件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設(shè)H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數(shù)的底)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x21
+
x22
+a2
,③
x31
+
x32
+a3

中有幾個(gè)為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省衡水中學(xué)高三(上)第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②,③
中有幾個(gè)為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

同步練習(xí)冊答案