【題目】如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.

1)證明:平面

2)若,求二面角的余弦值.

【答案】1)詳見解析;(2.

【解析】

1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.

2)以為原點建平面直角坐標系,求出平面平與平面的法向量

,,最后求得二面角的余弦值為.

解:(1)連結(jié)

,且的中點,

∵平面平面,

平面平面

平面.

平面,

為菱形,且為棱的中點,

.

又∵,平面

平面.

2)由題意有,

∵四邊形為菱形,且

分別以,所在直線為軸,軸,

建立如圖所示的空間直角坐標系,設(shè),則

設(shè)平面的法向量為

,得

,得

取平面的法向量為

二面角為銳二面角,

∴二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半球內(nèi)有一內(nèi)接正四棱錐SABCD,該四棱錐的體積為

1)求半球的半徑.

2)求平面SAD與平面SBC所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于x的方程fx)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是(

A.01)∪(1,eB.

C.D.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面平面, , 的中點.

(1)求證: 平面;

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是ABPD的中點,且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位計劃在一水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.

(1)求未來3年中,設(shè)表示流量超過120的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線處的切線方程;

2)討論函數(shù)的單調(diào)性;

3)若關(guān)于x的不等式恒成立,且k的最小值是m,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀,狄利克雷定義了一個“奇怪的函數(shù)” 其中R為實數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)有如下四個命題,正確的為( )

A.函數(shù)是偶函數(shù)

B.,,恒成立

C.任取一個不為零的有理數(shù)T,對任意的恒成立

D.不存在三個點,,,使得為等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案