已知命題p:“若k>0,則方程x2+2x-k=0有實數(shù)根”,命題q:“若x+y≠8,則x≠2或y≠6”,則p∧q是
 
命題.(填“真”或“假”).
考點:復合命題的真假
專題:簡易邏輯
分析:先判斷出兩個命題的真假,再由復合命題的真假判斷規(guī)則進行判斷即可得出正確選項.
解答: 解:命題p:“若k>0,則方程x2+2x-k=0有實數(shù)根”,因為k>0時,△=4+4k>0,故方程有實根,故p為真命題,
命題q:∵若x+y≠8,則x≠2或y≠6的逆否命題為:若x=2且y=6,則x+y=8為真命題,又命題與其逆否命題真假性一致,故q為真命題;
∴p∧q是真命題
故答案為:真.
點評:本題考查復合命題的真假判斷規(guī)則,熟練掌握真假的判斷規(guī)則是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0與圓O相交于A、B兩點,求|AB|;
(2)如圖,設M(x1,y1),P(x2,y2)是圓O上的兩個動點,點M關(guān)于原點的對稱點為M,點M關(guān)于x軸的對稱點為M2,如果直線=PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
4
5
,且α為第三象限角.
(1)求sinα的值;
(2)求f(α)=
tan(π-α)•sin(π-α)•sin(
π
2
-α)
cos(π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是平行四邊形,側(cè)SBC是正三角形,點E是SB的中點,且AE⊥平面ABC.
(1)證明:SD∥平面ACE;
(2)若AB⊥AS,BC=2,求點S到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各式正確的是(  )
A、0•
a
=
0
B、0•
a
=0
C、0•a=
0
D、
0
•a=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則h=
 
cm,該幾何體的外接球半徑為
 
cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點的坐標分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的半徑及方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a為函數(shù)f(x)=x2+2α
1-x2
2-6α+13,設t=
1-x2

(1)求t的取值范圍并將f(x)表示為關(guān)于t的函數(shù)g(t);
(2)求函數(shù)g(t)的最大值m,用a表示.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c為其三邊,若a2+b2+ab<c2,則△ABC是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不能確定

查看答案和解析>>

同步練習冊答案