精英家教網 > 高中數學 > 題目詳情
如果函數f(x)=x2+bx+c對任意的實數x,都有f(1+x)=4f(
x2
)
,那么  f(-1),f(-2),f(2)的值從小到大的順序是
 
分析:將已知恒成立的方程化簡得到一次不等式恒成立,令一次項系數為0同時常數項為0列出方程組,求出b,c的值,求出二次函數的對稱軸及開口方向,判斷出函數值的大。
解答:解:∵f(x)=x2+bx+c對任意的實數x,都有f(1+x)=4f(
x
2
)

(1+x)2+b(1+x)+c=4(
x2
4
+
b
2
x+c)
對任意實數x恒成立
即(b-2)x+3c-b-1=0對任意x恒成立
b-2=0
3c-b-1=0

解得b=2,c=1
所以f(x)=x2+2x+1=(x+1)2
其對稱軸為x=-1,開口向上
所以f(-1)<f(-2)<f(2)
故答案為f(-1)<f(-2)<f(2)
點評:解決二次函數的性質問題關鍵是求出二次函數的對稱軸及利用二次項系數的符號判斷出開口方向.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

14、有六個命題:
①如果函數y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是
①③④⑥
(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在區(qū)間D上的函數f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數f(x)在區(qū)間D上可被函數g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

有六個命題:
①如果函數y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是________(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

有六個命題:
①如果函數y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關于x=a對稱;②如果函數f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關于x=0對稱;③如果函數y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關于x=a對稱;④函數y=f(x)與
f(2a-x)的圖象關于x=a對稱;⑤函數y=f(a-x)與y=f(a+x)的圖象關于x=a對稱;⑥函數y=f(a-x)與y=f(a+x)的圖象關于x=0對稱.則正確的命題是______(請將你認為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

同步練習冊答案