【題目】在正三棱錐中,是的中點(diǎn),且,底面邊長(zhǎng),則正三棱錐的外接球的表面積為( )
A.B.C.D.
【答案】B
【解析】
試題根據(jù)三棱錐為正三棱錐,可證明出AC⊥SB,結(jié)合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三條側(cè)棱兩兩互相垂直.最后利用公式求出外接圓的直徑,結(jié)合球的表面積公式,可得正三棱錐S-ABC的外接球的表面積.
取AC中點(diǎn),連接BN、SN,∵N為AC中點(diǎn),SA=SC,∴AC⊥SN,
同理AC⊥BN,∵SN∩BN=N,∴AC⊥平面SBN,
∵SB平面SBN,∴AC⊥SB,∵SB⊥AM且AC∩AM=A,
∴SB⊥平面SACSB⊥SA且SB⊥AC,
∵三棱錐S-ABC是正三棱錐,
∴SA、SB、SC三條側(cè)棱兩兩互相垂直.
∵底面邊長(zhǎng)∴側(cè)棱SA=2,
∴正三棱錐S-ABC的外接球的直徑為:,
∴正三棱錐S-ABC的外接球的表面積是,故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線(xiàn),某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,有,且的最大值.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是關(guān)于軸的對(duì)稱(chēng)點(diǎn),設(shè)點(diǎn),連接與橢圓相交于點(diǎn),直線(xiàn)與軸相交于點(diǎn),試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為及以上的花苗為優(yōu)質(zhì)花苗.
求圖中的值,并求綜合評(píng)分的中位數(shù).
用樣本估計(jì)總體,以頻率作為概率,若在兩塊試驗(yàn)地隨機(jī)抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
附:下面的臨界值表僅供參考.
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線(xiàn)性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如下表:
(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線(xiàn)性回歸方程。若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交于,兩點(diǎn),點(diǎn)在第一象限,軸,垂足為.連結(jié)并延長(zhǎng)交于點(diǎn).
(1)設(shè)到直線(xiàn)的距離為,求的取值范圍;
(2)求面積的最大值及此時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線(xiàn)性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線(xiàn)性相關(guān)程度相當(dāng)高,可用線(xiàn)性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線(xiàn)性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線(xiàn)性相關(guān)程度相當(dāng)高,可用線(xiàn)性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),單調(diào)遞增,,若對(duì)任意,存在,使得成立,則稱(chēng)是在上的“追逐函數(shù)”.若,則下列四個(gè)命題:①是在上的“追逐函數(shù)”;②若是在上的“追逐函數(shù)”,則;③是在上的“追逐函數(shù)”;④當(dāng)時(shí),存在,使得是在上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com