已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a為公比的等比數(shù)列.
(Ⅰ)證明:aa+2=a1a2;
(Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n
分析:(Ⅰ)由
bn+1
bn
=q
,知
an+1an+2
anan+1
=
an+2
an
=q
,由此可得an+2=anq2(n∈N*).
(Ⅱ)由題意知a2n-1=a1q2n-2,a2n=a2qn-2,所以cn=a2n-1+2a2n=5q2n-2.由此可知{cn}是首項為5,以q2為公比的等比數(shù)列.
(Ⅲ)由題設(shè)條件得
1
a2n-1
=
1
a1
q2-2n
,
1
a2n
=
1
a2
q2-2n
,所以
1
a1
+
1
a2
+…+
1
a2n
=(
1
a1
+
1
a3
+…+
1
a2n-1
)+(
1
a2
+
1
a4
+…+
1
a2n
)
=
3
2
(1+
1
q2
+
1
q1
+…+
1
q2n-2
)
.由此可知
1
a1
+
1
a2
+…+
1
a2n
=
3
2
n,q=1
3
2
[
q2n-1
q2n-2(q2-1)
],q≠1.
解答:解:(Ⅰ)證:由
bn+1
bn
=q

an+1an+2
anan+1
=
an+2
an
=q
,
∴an+2=anq2(n∈N*).

(Ⅱ)證:∵an=qn-2q2
∴a2n-1=a2n-3q2=a1q2n-2,
a2n=a2n-2q2=a2qn-2
∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2
∴{cn}是首項為5,以q2為公比的等比數(shù)列.

(Ⅲ)由(Ⅱ)得
1
a2n-1
=
1
a1
q2-2n
,
1
a2n
=
1
a2
q2-2n
,于是
1
a1
+
1
a2
+…+
1
a2n

=(
1
a1
+
1
a3
+…+
1
a2n-1
)+(
1
a2
+
1
a4
+…+
1
a2n
)

=
1
a1
(1+
1
q2
+
1
q4
+…+
1
q2n-2
)+
1
a2
(1+
1
q2
+
1
q4
+…+
1
q2n-2
)

=
3
2
(1+
1
q2
+
1
q1
+…+
1
q2n-2
)

當(dāng)q=1時,
1
a1
+
1
a2
+…+
1
a2n
=
3
2
(1+
1
q2
+
1
q4
+…+
1
q2n-2
)
=
3
2
n

當(dāng)q≠1時,
1
a1
+
1
a2
+…+
1
a2n
=
3
2
(1+
1
q2
+
1
q4
+…+
1
q2n-2
)
=
3
2
(
1-q-2n
1-q-2
)
=
3
2
[
q2n-1
q2n-2(q2-1)
]

1
a1
+
1
a2
+…+
1
a2n
=
3
2
n,q=1
3
2
[
q2n-1
q2n-2(q2-1)
],q≠1.
點評:本題主要考查等比數(shù)列的定義,通項公式和求和公式等基本知識及基本的運算技能,考查分析問題能力和推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)當(dāng)m=1時,求證:對于任意的實數(shù)λ,{an}一定不是等差數(shù)列;
(2)當(dāng)λ=-
1
2
時,試判斷{bn}是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)問是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項和.是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•孝感模擬)已知數(shù)列{an}和{bn}滿足a1=1且bn=1-2an,bn+1=
bn
1-4 
a
2
n

(I)證明:數(shù)列{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
對任意正整數(shù)n都成立的最大實數(shù)k.

查看答案和解析>>

同步練習(xí)冊答案