精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,M、N是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且
F1M
F2N
=0

(1)設(shè)C是以MN為直徑的圓,試判斷原點(diǎn)O與圓C的位置關(guān)系;
(2)設(shè)橢圓的離心率為
1
2
,MN的最小值為2
15
,求橢圓方程.
分析:(1)C是以MN為直徑的圓,求出M,N的坐標(biāo),利用
F1M
F2N
=0
,判斷
OM
ON
>0
,求得原點(diǎn)O在圓C的內(nèi)部;
(2)設(shè)橢圓的離心率為
1
2
,推出a=2c,利用基本不等式,通過(guò)MN的最小值為2
15
求出c,a,b,從而求出橢圓方程.
解答:解:(1)設(shè)橢圓
x2
a2
+
y2
b2
=1
的焦距為2c(c>0),
則其右準(zhǔn)線方程為x=
a2
c
,且F1(-c,0),F(xiàn)2(c,0).
設(shè)M(
a2
c
,y1),N(
a2
c
,  y2)
,
F1M
=(
a2
c
+c,y1),
F2
N=(
a2
c
-c, y2)

OM
=(
a2
c
,y1),
ON
=(
a2
c
, y2)

因此
F1M
F2N
=0,所以(
a2
c
+c,y1)•(
a2
c
-c,y2)=0

(
a2
c
)
2
+y1y2=c2

于是
OM
ON
(
a2
c
)
2
+y1y2=c2>0
,故∠MON為銳角.
所以原點(diǎn)O在圓C外.
(2)因?yàn)闄E圓的離心率為
1
2
,所以a=2c,
于是M(4c,y1)N(4c,y2),且y1y2=c2-(
a2
c
)
2
=-15c2

MN2=(y1-y22=y12+y22-2y1y2=|y1|2+|y2|2+2|y1y2|≥4|y1y2|=60c2
當(dāng)且僅當(dāng)y1=-y2=
15
c
或y2=-y1=
15
c
時(shí)取“=”號(hào),
所以(MN)min=2
15
c=2
15
,于是c=1,從而a=2,b=
3

故所求的橢圓方程是
x2
4
+
y2
3
=1
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系,橢圓的標(biāo)準(zhǔn)方程,考查分析問(wèn)題解決問(wèn)題的能力,考查計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)過(guò)點(diǎn)P(1,
3
2
)
,其左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=
1
2
,M,N是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且
F1M
F2N
=0

(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),O為坐標(biāo)原點(diǎn).
(Ⅰ)已知橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng),值有|OA|2+|OB|2<|AB|2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn)到左焦點(diǎn)為F的最大距離是2+
3
,已知點(diǎn)M(1,e)在橢圓上,其中e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)且斜率為K的直線交橢圓于P、Q兩點(diǎn),其中P在第一象限,它在x軸上的射影為點(diǎn)N,直線QN交橢圓于另一點(diǎn)H.證明:對(duì)任意的K>0,點(diǎn)P恒在以線段QH為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武清區(qū)一模)如圖,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、
F2(1,0),M、N是直線x=a2上的兩個(gè)動(dòng)點(diǎn),且
F1M
F2N
=0

(1)設(shè)曲線C是以MN為直徑的圓,試判斷原點(diǎn)O與圓C的位置關(guān)系;
(2)若以MN為直徑的圓中,最小圓的半徑為2
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2,若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案