已知等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,且
Sn
Tn
=
5n+2
3n+1
,則
a9
b9
的值為
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:依題意,利用等差數(shù)列的性質(zhì)可得,
a9
b9
=
S17
T17
,從而可得答案.
解答: 解:∵等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,且
Sn
Tn
=
5n+2
3n+1
,
a9
b9
=
2a9
2b9
=
a1+a17
b1+b17
=
17×(a1+a17)
2
17×(b1+b17)
2
=
S17
T17
=
5×17+2
3×17+1
=
87
52

故答案為:
87
52
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),熟練地應(yīng)用
a9
b9
=
S17
T17
是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(logax)=
a(x2-1)
x(a2-1)
,(0<a<1)
(1)求f(x)的表達(dá)式,并判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),恒有f(1-m)+f(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,E、F、G分別在棱AB、BC、CD上,若AC∥面EFG,BD∥面EFG,
BE
AE
=
3
4
FG
BD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα與cosα是關(guān)于x的方程x2+px+q=0的兩根,求證:1+2q-p2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0),不等式f(x)<-2x的解集為{x|-3<x<-1}.若函數(shù)g(x)=f(x)+6a和x軸只有一個(gè)交點(diǎn).
(1)求f(x)的解析式;
(2)當(dāng)x∈[
5
2
,5]時(shí),求函數(shù)y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
=(1,2),
e2
=(3,4),若向量8
e1
+t
e2
與向量t2
e1
+
e2
共線,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是非零且不共線向量,若向量8
e1
+t
e2
與向量t2
e1
+
e2
共線,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax(x<0)
(a-2)x+5a(x≥0)
滿足對(duì)任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式;
(2)已知一次函數(shù)f(x)滿足f[f(x)]=4x+9,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案