6.如果復(fù)數(shù)z=a2+a-2+(a2-3a+2)i為純虛數(shù),那么實(shí)數(shù)a的值為( 。
A.-2或 1B.-2C.1D.2

分析 由復(fù)數(shù)z=a2+a-2+(a2-3a+2)i為純虛數(shù),列出方程組,求解即可得答案.

解答 解:由復(fù)數(shù)z=a2+a-2+(a2-3a+2)i為純虛數(shù),
得$\left\{\begin{array}{l}{{a}^{2}+a-2=0}\\{{a}^{2}-3a+2≠0}\end{array}\right.$,解得a=-2.
∴實(shí)數(shù)a的值為:-2.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an,bn)在函數(shù)f (x)=2x的圖象上(n∈N*).
(Ⅰ)證明:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)若a1=1,直線y=(${2^{a_2}}$ln2)(x-a2)+${2^{a_2}}$在x軸上的截距為2-$\frac{1}{ln2}$,求數(shù)列{anbn2}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中,a1=1,a${\;}_{n+1}=\sqrt{2}$an,若bn=log2an,則數(shù)列{bn}的前16項(xiàng)和等于( 。
A.52B.56C.60D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\sqrt{\frac{1}{8}}•\root{3}{{2\sqrt{2}}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,a3a7=8,則a5=±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展開式中,求含x3的項(xiàng)的系數(shù);
(2)若(2-x)6展開式中第二項(xiàng)小于第一項(xiàng),但不小于第三項(xiàng),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c分別為△ABC的內(nèi)角A,B,C的對邊,且滿足C=2A,cosA=$\frac{3}{4}$.
(1)求$\frac{c}{a}$及sinB的值;
(2)若△ABC周長為30,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=|x-2|的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,棱長為a,E為棱CC1上的動點(diǎn).
(1)求異面直線BD與A1E所成的角;
(2)確定E點(diǎn)的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

同步練習(xí)冊答案