A. | 有且僅有一條 | B. | 有且僅有兩條 | C. | 有無窮多條 | D. | 不存在 |
分析 過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,先看直線AB斜率不存在時,求得橫坐標之和等于2,不符合題意;進而設(shè)直線AB為y=k(x-1)與拋物線方程聯(lián)立消去y,進而根據(jù)韋達定理表示出A、B兩點的橫坐標之和,進而求得k.得出結(jié)論.
解答 解:過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,
若直線AB的斜率不存在,則橫坐標之和等于2,不適合.
故設(shè)直線AB的斜率為k,則直線AB為y=k(x-1)
代入拋物線y2=4x得,k2x2-2(k2+2)x+k2=0
∵A、B兩點的橫坐標之和等于3,
∴$\frac{2({k}^{2}+2)}{{k}^{2}}$=3,解得:k2=4.
則這樣的直線有且僅有兩條,
故選:B.
點評 本題主要考查了拋物線的應(yīng)用.解題的時候要注意討論直線斜率不存在時的情況,以免遺漏.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x<0} | B. | {x|-1<x<2} | C. | {x|0<x<1} | D. | {x|x<0或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1<x<4} | C. | {x|2<x<3} | D. | {x|2<x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=ex | B. | y=lnx | C. | y=x2 | D. | y=$\frac{x-1}{x+1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com