是球心的半徑的中點,分別過作垂直于的平面,截球面得兩個圓,則這兩個圓的面積比值為:()
A.  B.  C.  D.
D
設分別過作垂線于的面截球得三個圓的半徑為,球半徑為,
則: 
 ∴這兩個圓的面積比值為:   故選D
【點評】:此題重點考察球中截面圓半徑,球半徑之間的關系;
【突破】:畫圖數(shù)形結合,提高空間想象能力,利用勾股定理;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

四面體中,面與面的二面角,頂點在面上的射影的垂心,的重心,若,,則     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐中,平面,底面為菱形,=60,,是線段的中點.
(1)求證:;
(2)求平面與平面所成銳二面角的大。
(3)在線段上是否存在一點,使得∥平面PAE,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD上的點,且DE=a(0<≦1).    
(Ⅰ)求證:對任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設地球半徑為,甲、乙兩地均在本初子午線(經(jīng)線上),且甲地位于北緯,乙地位于南緯,則甲、乙兩地的球面距離為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:一個圓錐的底面半徑為2,高為6,在其中有一個半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的體積;
(2)當x為何值時,圓柱的側面積最大,最大值是多少.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱錐O-ABC,OA=5,OB=4,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M、N分別是棱OA、BC的中點,則MN=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正三棱錐的高為1,底面邊長為2
6
,其內(nèi)有一個球和該三棱錐的四個面都相切,求:
(1)棱錐的全面積;
(2)球的半徑R.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.
①不存在點D,使四面體ABCD有三個面是直角三角形
②不存在點D,使四面體ABCD是正三棱錐
③存在點D,使CD與AB垂直并且相等
④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上
其中真命題的序號是( 。
A.①②B.②③C.③D.③④

查看答案和解析>>

同步練習冊答案