設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值.試對雙曲線
x2
a2
-
y2
b2
=1
寫出具有類似特性的性質,并加以證明.
分析:(1)橢圓C的焦點在x軸上,由橢圓上的點A到F1、F2兩點的距離之和是4,根據(jù)橢圓的定義可得2a=4,即a=2.利用點A(1,
3
2
)在橢圓上,可求得b2=3,從而可求橢圓C的方程;
(2)先利用中點坐標公式求得動點與F1K之間坐標關系,利用動點在橢圓上,可求中點的軌跡方程.
(3)設點M的坐標為(m,n),則點N的坐標為(-m,-n),進而可知
m2
a2
-
n2
b2
=1、又設點P的坐標為(x,y),表示出直線PM和PN的斜率,求的兩直線斜率乘積的表達式,把y和x的表達式代入發(fā)現(xiàn)結果與p無關.
解答:解:(1)橢圓C的焦點在x軸上,由橢圓上的點A到F1、F2兩點的距離之和是4,得2a=4,即a=2.
又點A(1,
3
2
)在橢圓上,因此b2=3,于是c2=1.
所以橢圓C的方程為
x2
4
+
y2
3
=1
,焦點F1(-1,0),F(xiàn)2(1,0).
(2)設橢圓C上的動點為K(x1,y1),線段F1K的中點Q(x,y),∴x1=2x+1,y1=2y.
因此
(2x+1)2
4
+
(2y)2
3
=1
.即(x+
1
2
)
2
+
4y2
3
=1
為所求的軌跡方程.
(3)類似的性質為若MN是雙曲線
x2
a2
-
y2
b2
=1上關于原點對稱的兩個點,
點P是雙曲線上任意一點,當直線PM、PN的斜率都存在,
并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值.
設點M的坐標為(m,n),則點N的坐標為(-m,-n),
其中
m2
a2
-
n2
b2
=1、又設點P的坐標為(x,y),
由kPM=
y-n
x-m
,kPN=
y+n
x+m

得kPM•kPN=
y-n
x-m
y+n
x+m
=
y2-n2
x2-m2
,
將y2=
b2
a2
x2-b2,n2=
b2
a2
m2-b2,代入得kPM•kPN=
b2
a2
點評:本題以橢圓為載體,考查橢圓的標準方程,考查代入法求軌跡方程,考查了圓錐曲線的共同特征.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別為橢C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個焦點,橢圓C上的點A(1,
3
2
)
到兩點的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設F1,F(xiàn)2分別為橢C:數(shù)學公式(a>b>0)的左、右兩個焦點,橢圓C上的點數(shù)學公式到兩點的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點數(shù)學公式求|PQ|的最大值.

查看答案和解析>>

同步練習冊答案