對實數(shù)a和b,定義運(yùn)算“?”:a?b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=(x2-2)?(x-1),x∈R,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有兩個實根,求實數(shù)c的取值范圍.
考點:函數(shù)的零點與方程根的關(guān)系,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由新定義寫出分段函數(shù),然后畫出圖象,數(shù)形結(jié)合得到單調(diào)期間;
(2)直接由函數(shù)圖象得到使函數(shù)f(x)=c恰有兩個實根的實數(shù)c的取值范圍.
解答: 解:(1)由a?b=
a,a-b≤1
b,a-b>1
,得f(x)=(x2-2)?(x-1)=
x2-2,-1≤x≤2
x-1,x<-1或x>2
,
其圖象如圖,

由圖可知,函數(shù)的增區(qū)間為:(-∞,-1),[0,2],(2,+∞);函數(shù)的減區(qū)間為[-1,2].
(2)由圖可知,使函數(shù)f(x)=c恰有兩個實根的實數(shù)c的取值范圍是(-2,-1]∪(1,2].
點評:本題是新定義題,考查了分段函數(shù)的應(yīng)用,考查了函數(shù)零點的判斷方法及數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-a)=2cos(π+a)sin2a-sinacosa-2cos2a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

?ABCD中,M,N分別為DC,BC的中點,已知
AM
=
c
,
AN
=
d
,用
c
,
d
表示
AB
=
 
AD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-3x2+(6-a)ax+b,若a=1,使f(x)<0恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三位正整數(shù)的集合中有多少個數(shù)是5的倍數(shù)?求它們的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
4tan12.5°
1-tan212.5°
,b=sin85°-
3
cos85°,c=2(sin47°sin66°-sin24°sin43°)則a、b、c的大小關(guān)系是( 。
A、b>c>a
B、a>b>c
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωx,其中ω>0,若x1∈[-
2
3
π,0),x2∈(0,
π
4
],f(x1)=f(x2),則ω的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校1200名高三年級學(xué)生參加了一次數(shù)學(xué)測驗(滿分為100分),為了分析這次數(shù)學(xué)測驗的成績,從這1200人的數(shù)學(xué)成績中隨機(jī)抽出200人的成績繪制成如下的統(tǒng)計表,請根據(jù)表中提供的信息解決下列問題;
(1)求a、b、c的值;
(2)如果從這1200名學(xué)生中隨機(jī)取一人,試估計這名學(xué)生該次數(shù)學(xué)測驗及格的概率p(注:60分及60分以上為及格);
(3)試估計這次數(shù)學(xué)測驗的年級平均分.
成績分組頻數(shù)頻率平均分
[0,20)30.01516
[20,40)ab32.1
[40,60)250.12555
[60,80)c0.574
[80,100]620.3188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點F1,F(xiàn)2,點P在橢圓上,則△PF1F2的面積最大值是
 

查看答案和解析>>

同步練習(xí)冊答案