如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C-PA-B的大小的余弦值.
【答案】分析:(1)要證AB⊥平面PCB,只需證明直線(xiàn)AB垂直平面PCB內(nèi)的兩條相交直線(xiàn)PC、CD即可;
(2)取AP的中點(diǎn)O,連接CO、DO;說(shuō)明∠COD為二面角C-PA-B的平面角,然后解三角形求二面角C-PA-B的大小的余弦值.
解答:(1)證明:∵PC⊥平面ABC,AB?平面ABC,
∴PC⊥AB.
∵CD⊥平面PAB,AB?平面PAB,
∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.

(2)解:取AP的中點(diǎn)O,連接CO、DO.
∵PC=AC=2,∴C0⊥PA,CO=
∵CD⊥平面PAB,由三垂線(xiàn)定理的逆定理,得DO⊥PA.
∴∠COD為二面角C-PA-B的平面角.
由(1)AB⊥平面PCB,∴AB⊥BC,
又∵AB=BC,AC=2,求得BC=
PB=,CD=

cos∠COD=
點(diǎn)評(píng):本題考查直線(xiàn)與平面垂直的判定,二面角的求法,考查空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB
(Ⅰ)求證:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
,
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若M為線(xiàn)段PC上的點(diǎn),設(shè)
|
PM|
|PC
|
,問(wèn)λ為何值時(shí)能使直線(xiàn)PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求證:PA⊥平面PBC;
(Ⅱ)若E為側(cè)棱PB的中點(diǎn),求直線(xiàn)AE與底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng)二模)如圖,三棱錐P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,則P-ABC的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在三棱錐P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求證:AB⊥平面PAC. (2)設(shè)二面角A-PC-B•的大小為θ•,求tanθ•的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案