精英家教網 > 高中數學 > 題目詳情

【題目】2017年9月,國務院發(fā)布了《關于深化考試招生制度改革的實施意見》.某地作為高考改革試點地區(qū),從當年秋季新入學的高一學生開始實施,高考不再分文理科.每個考生,英語、語文、數學三科為必考科目,并從物理、化學、生物、政治、歷史、地理六個科目中任選三個科目參加高考.物理、化學、生物為自然科學科目,政治、歷史、地理為社會科學科目.假設某位考生選考這六個科目的可能性相等.

(1)求他所選考的三個科目中,至少有一個自然科學科目的概率;

(2)已知該考生選考的三個科目中有一個科目屬于社會科學科目,兩個科目屬于自然科學科目.若該考生所選的社會科學科目考試的成績獲等的概率都是0.8,所選的自然科學科目考試的成績獲等的概率都是0.75,且所選考的各個科目考試的成績相互獨立.用隨機變量表示他所選的三個科目中考試成績獲等的科目數,求的分布列和數學期望.

【答案】(1);(2)見解析.

【解析】試題分析:

(1)由題意結合對立事件計算公式可知該位考生選考的三個科目中,至少有一個自然科學科目的概率為

(2)由題意可知,隨機變量的所有可能取值有0, 1,2,3.計算相應的概率值為,,,據此可得分布列,然后計算數學期望為.

試題解析:

(1)記某位考生選考的三個科目中至少有一個科目是自然科學科目為事件

,

所以該位考生選考的三個科目中,至少有一個自然科學科目的概率為.

(2)隨機變量的所有可能取值有0, 1,2,3.

因為,

,

所以的分布列為

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】橢圓)的左、右焦點分別為,,過作垂直于軸的直線與橢圓在第一象限交于點,若,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)是橢圓上位于直線兩側的兩點.若直線過點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線1(a0b0)的右焦點為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若交于兩點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了人,將調查情況進行整理后制成下表:

年齡(歲)

頻數

贊成人數

)完成被調查人員的頻率分布直方圖.

)若從年齡在的被調查者中各隨機選取人進行追蹤調查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計2018年春節(jié)期間微信紅包收發(fā)總量達到460億個。收發(fā)紅包成了生活的調味劑。某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下,對它們搶到的紅包個數進行統(tǒng)計,得到如下數據:

型號

手機品牌

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

Ⅰ)如果搶到紅包個數超過5個的手機型號為優(yōu),否則非優(yōu),請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?

Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出2種型號的手機進行大規(guī)模宣傳銷售.求型號Ⅰ或型號Ⅱ被選中的概率.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為.

(1)設為參數,若,求直線的參數方程;

(2)已知直線與曲線交于,設,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|2x﹣1|+|2x+3|

(1)解不等式f(x)6;

(2)記f(x)的最小值是m,正實數a,b滿足2ab+a+2b=m,求a+2b的最小值.

查看答案和解析>>

同步練習冊答案