【題目】已知關(guān)于的一元二次方程.
(1)若,,求方程有實根的概率;
(2)若,,求方程有實根的概率.
【答案】(1) (2)
【解析】
首先確定要使方程有實根,需判別式,即;(1)列出所有可能的取值,找出其中的個數(shù),根據(jù)古典概型求得結(jié)果;(2)在平面直角坐標系中畫出所有可能取值構(gòu)成的區(qū)域;再畫出滿足的所有區(qū)域;利用幾何概型求得結(jié)果.
用表示取相應(yīng)值時所對應(yīng)的一個一元二次方程
要使有實根,則,即
(1)的所有可能取值有個:,,,,,,,,,,,
其中滿足的有個
故方程有實根的概率為:
(2)設(shè)事件表示“一元二次方程有實根”
的所有可能取值構(gòu)成的區(qū)域為,這是一個長方形區(qū)域,面積為;
構(gòu)成事件的區(qū)域為,如圖中陰影部分,面積為
故方程有實根的概率為:
科目:高中數(shù)學 來源: 題型:
【題目】某輿情機構(gòu)為了解人們對某事件的關(guān)注度,隨機抽取了人進行調(diào)查,其中女性中對該事件關(guān)注的占,而男性有人表示對該事件沒有關(guān)注.
關(guān)注 | 沒關(guān)注 | 合計 | |
男 | |||
女 | |||
合計 |
(1)根據(jù)以上數(shù)據(jù)補全列聯(lián)表;
(2)能否有的把握認為“對事件是否關(guān)注與性別有關(guān)”?
(3)已知在被調(diào)查的女性中有名大學生,這其中有名對此事關(guān)注.現(xiàn)在從這名女大學生中隨機抽取人,求至少有人對此事關(guān)注的概率.
附表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.己知
點的極坐標為,曲線的極坐標方程為,曲線的參數(shù)方程為, (為參數(shù)).曲線和曲線相交于兩點.
(1)求點的直角坐標;
(2)求曲線的直角坐標方程和曲線的普通方程;
(3)求的面枳,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)若在處有極值10,求的值;
(3)若對任意的,有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1 , F2分別是長軸長為 的橢圓C: 的左右焦點,A1 , A2是橢圓C的左右頂點,P為橢圓上異于A1 , A2的一個動點,O為坐標原點,點M為線段PA2的中點,且直線PA2與OM的斜率之積恒為﹣ .
(1)求橢圓C的方程;
(2)設(shè)過點F1且不與坐標軸垂直的直線C(2,2,0)交橢圓于A,B兩點,線段AB的垂直平分線與B(2,0,0)軸交于點N,點N橫坐標的取值范圍是 ,求線段AB長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com