18.如圖:三棱柱ABC-A1B1C1的所有棱長均相等,AA1⊥平面ABC,E為AA1的中點.
(1)求證:平面BC1E⊥平面BCC1B1;
(2)求直線BC1與平面BB1A1A所成角的正弦值.

分析 (1)連接CB1交BC1于點O,連接EC,EB1,推導出EO⊥CB1,EO⊥BC1,從而EO⊥平面BCC1B1,由此能證明平面EBC1⊥平面BCC1B1
(2)取A1B1的中點為H,連接C1H、BH,推導出C1H⊥平面BB1A1A,則∠C1BH為直線BC1與平面BB1A1A所成的角,由此能求出直線BC1與平面BB1A1A所成角的正弦值.

解答 證明:(1)如圖1,連接CB1交BC1于點O,則O為CB1與BC1的中點,
連接EC,EB1,
依題意有;EB=EC1=EC=EB1,…(2分)
∴EO⊥CB1,EO⊥BC1,
∵CB1∩BC1=O,∴EO⊥平面BCC1B1,
∵OE⊆平面BC1E,∴平面EBC1⊥平面BCC1B1.…(5分)
解:(2)如圖2,取A1B1的中點為H,連接C1H、BH,
∵AA1⊥平面ABC,∴平面A1B1C1⊥平面BB1A1A,
平面A1B1C1∩平面BB1A1A=A1B1,
又∵A1C1=B1C1,H為A1B1的中點,
∴C1H⊥A1B1,∴C1H⊥平面BB1A1A,
則∠C1BH為直線BC1與平面BB1A1A所成的角.…(8分)
令棱長為2a,則C1H=$\sqrt{3}a$,BC1=$2\sqrt{2}a$,
∴$sin∠{C_1}BH=\frac{{\sqrt{3}a}}{{2\sqrt{2}a}}=\frac{{\sqrt{6}}}{4}$
所以直線BC1與平面BB1A1A所成角的正弦值為$\frac{{\sqrt{6}}}{4}$.…(12分)

點評 本題考查面面垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.某中學環(huán)保社團參照國家環(huán)境標準,制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應關系如下表(假設該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù)(0,50](50,100](100,150](150,200](200,250](250,300]
空氣質(zhì)量等級1級優(yōu)2級良3級輕度污染4級中度污染5級重度污染6級嚴重污染
該社團將該校區(qū)在2016年連續(xù)100天的空氣質(zhì)量指數(shù)數(shù)據(jù)作為樣本,繪制了如圖的頻率分布表,將頻率視為概率.估算得全年空氣質(zhì)量等級為2級良的天數(shù)為73天(全年以365天計算).
空氣質(zhì)量指數(shù)頻數(shù)頻率
(0,50]xa
(50,100]yb
(100,150]250.25
(150,200]200.2
(200,250]150.15
(250,300]100.1
(Ⅰ)求x,y,a,b的值;
(Ⅱ)請在答題卡上將頻率分布直方圖補全(并用鉛筆涂黑矩形區(qū)域),并估算這100天空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列結論中錯誤的是( 。
A.若0<α<$\frac{π}{2}$,則sinα<tanα
B.若α是第二象限角,則$\frac{α}{2}$為第一象限或第三象限角
C.若角α的終邊過點P(3k,4k)(k≠0),則sinα=$\frac{4}{5}$
D.若扇形的周長為6,半徑為2,則其中心角的大小為1弧度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知拋物線y2=4x與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點F,點A是兩曲線的一個交點,點B是點F關于坐標原點的對稱點,且以AB為直徑的圓過點F,則雙曲線的離心率為( 。
A.2$\sqrt{2}$-1B.$\sqrt{2}$+1C.8$\sqrt{2}$-8D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,則|3$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.52B.$2\sqrt{13}$C.100-48$\sqrt{3}$D.$\sqrt{100-48\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點A(0,2),動點P(x,y)滿足條件$\left\{\begin{array}{l}{x≥0}\\{y≤2x}\\{3x-y≤6}\end{array}\right.$則|PA|的最小值是( 。
A.1B.2C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示(單位:cm),則此幾何體的表面積是(  )
A.96+16$\sqrt{2}$cm2B.80+16$\sqrt{2}$cm2C.96+32$\sqrt{2}$cm2D.80+32$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年浙江普通高校招生學業(yè)水平考試數(shù)學試卷(解析版) 題型:填空題

已知拋物線過點,則______,準線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆江西南昌市新課標高三一輪復習訓練五數(shù)學試卷(解析版) 題型:解答題

中,角所對的邊分別為,且.

(1)求;

(2)設,求的值.

查看答案和解析>>

同步練習冊答案