(文科)已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個頂點(diǎn)到兩個焦點(diǎn)的距離分別是7和1
(1)求橢圓C的方程;
(2)求與橢圓C焦點(diǎn)相同,離心率為
3
2
的雙曲線方程.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
,a>b>0,由已知得
a-c=1
a+c=7
,由此能求出橢圓C的標(biāo)準(zhǔn)方程.
(2)由已知得雙曲線的焦點(diǎn)為F1(-3,0),F(xiàn)1(3,0),離心率為
3
2
,由此能求出雙曲線方程.
解答: 解:(1)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
,a>b>0,
長半軸長及半焦距分別為a,c,
由已知得
a-c=1
a+c=7
,解得a=4,c=3,
所以橢圓C的標(biāo)準(zhǔn)方程為
x2
16
+
y2
7
=1

(2)由(1)知橢圓C的焦點(diǎn)為F1(-3,0),F(xiàn)1(3,0),
∴雙曲線的焦點(diǎn)為F1(-3,0),F(xiàn)1(3,0),離心率為
3
2
,
∴設(shè)雙曲線方程為
x2
m2
-
y2
n2
=1
,(m>n>0),
m2+n2=9
3
m
=
3
2
,解得m=2,n=
5

∴雙曲線方程為
x2
4
-
y2
5
=1
點(diǎn)評:本題考查橢圓方程和雙曲線方程的合理運(yùn)用,是中檔題,解題時要認(rèn)真審題,注意橢圓和雙曲線的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為正項等比數(shù)列{an}的前n項和,已知a3=2S2+1,S3=13,則該數(shù)列的公比q=( 。
A、
3
4
B、
2
3
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)f(x)=ax2-2bx+1.
(1)已知集合P={-2,1,2},Q={-1,1,2},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)隨機(jī)任取一點(diǎn)(a,b),求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x-lnx,是否存在正實(shí)數(shù)a,使得函數(shù)f(x)的極小值小于0,若存在,求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
、
b
c
是同一平面內(nèi)的三個向量,其中
a
=(1,-2).
(Ⅰ)若|
c
|=2
5
,且
c
a
,求
c
的坐標(biāo);
(Ⅱ)若|
b
|=1,且
a
+
b
a
-2
b
垂直,求
a
b
的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c.
(Ⅰ)若f(x)有極值,求b的取值范圍;
(Ⅱ)若f(x)在x=1處取得極值,且f(x)有三個零點(diǎn)時,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+bx2+cx+a在x=-
2
3
與x=1處取到極值,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+3x,且x=3是f(x)的極值點(diǎn).
(1)求實(shí)數(shù)a的值;  
(2)求f(x)在x∈[1,5]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對的邊分別為a,b,c,若a+c=1+
3
,b=1,sinC=
3
sinA.
(1)求角B
(2)設(shè)f(x)=2sin(2x+B)+4cos2x,求函數(shù)f(x)在區(qū)間[
π
2
,π]的值域.

查看答案和解析>>

同步練習(xí)冊答案