【題目】某市居民用水?dāng)M實(shí)行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費(fèi),超出w立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖頻率分布直方圖:
(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)w=3時,估計該市居民該月的人均水費(fèi).

【答案】
(1)解:由頻率分布直方圖得:

用水量在[0.5,1)的頻率為0.1,

用水量在[1,1.5)的頻率為0.15,

用水量在[1.5,2)的頻率為0.2,

用水量在[2,2.5)的頻率為0.25,

用水量在[2.5,3)的頻率為0.15,

用水量在[3,3.5)的頻率為0.05,

用水量在[3.5,4)的頻率為0.05,

用水量在[4,4.5)的頻率為0.05,

∵用水量小于等于3立方米的頻率為85%,

∴為使80%以上居民在該用的用水價為4元/立方米,

∴w至少定為3立方米


(2)解:當(dāng)w=3時,該市居民的人均水費(fèi)為:

(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,

∴當(dāng)w=3時,估計該市居民該月的人均水費(fèi)為10.5元


【解析】(1)由頻率分布直方圖得:用水量在[0.5,1)的頻率為0.1,用水量在[1,1.5)的頻率為0.15,用水量在[1.5,2)的頻率為0.2,用水量在[2,2.5)的頻率為0.25,用水量在[2.5,3)的頻率為0.15,用水量在[3,3.5)的頻率為0.05,用水量在[3.5,4)的頻率為0.05,用水量在[4,4.5)的頻率為0.05,由此能求出為使80%以上居民在該用的用水價為4元/立方米,w至少定為3立方米.(2)當(dāng)w=3時,利用頻率分布直方圖能求出該市居民的人均水費(fèi).
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是(
A.f(x)=2sin x
B.f(x)=2cos2 x
C.f(x)=2cos2 x
D.f(x)=2cos x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為常數(shù)).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若在區(qū)間的極大值、極小值各有一個,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是七位評委為甲,乙兩名參賽歌手打出的分?jǐn)?shù)的莖葉圖(其中m,n為數(shù)字0~9中的一個),則甲歌手得分的眾數(shù)和乙歌手得分的中位數(shù)分別為a和b,則一定有(
A.a>b
B.a<b
C.a=b
D.a,b的大小與m,n的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5].已知樣本中平均氣溫不大于22.5℃的城市個數(shù)為11,則樣本中平均氣溫不低于25.5℃的城市個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S= (a2+b2﹣c2).
(1)求角C的大;
(2)求sinA+sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案