(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時(shí)x的值. 列表如下, 請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間                  上遞增.當(dāng)               時(shí),                 ;
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時(shí)x為何值?(直接回答結(jié)果,不需證明)
(1)函數(shù)在區(qū)間       上遞增.
當(dāng)     1          時(shí),   3             . ………………6分
(2)由函數(shù),(令),
顯然函數(shù)有最小值3,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192130587390.gif" style="vertical-align:middle;" />,
是偶函數(shù),則取得最小值時(shí)   ………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若偶函數(shù)上是減函數(shù),則下列關(guān)系式中成立的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),常數(shù).
(1)若,判斷在區(qū)間上的單調(diào)性,并加以證明;
(2)若在區(qū)間上的單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的值域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),求函數(shù)的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=的值域是
A.[ ,+)B.[,1)C.(0,1)D.[,1〕

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的奇函數(shù)f(x)在(0,+∞)上單調(diào)遞增,滿足f(1)=0,則
不等式f(x)>0的解集為__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法:①若(其中)是偶函數(shù), 則實(shí)數(shù);
既是奇函數(shù)又是偶函數(shù);
③已知是定義在上的奇函數(shù),若當(dāng)時(shí), ,則當(dāng)時(shí),
④已知是定義在R上的不恒為零的函數(shù), 且對任意的都滿足, 則是奇函數(shù).       
其中所有正確說法的序號是   ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)設(shè)是定義在上的函數(shù),且對任意,當(dāng)時(shí),都有;
(1)當(dāng)時(shí),比較的大;
(2)解不等式;
(3)設(shè),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案