【題目】在平面直角坐標(biāo)系中,以原點為極點,軸非負(fù)半軸為極軸,長度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過點,傾斜角為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)已知直線交曲線于兩點,求.
【答案】(1),(是參數(shù))(2)
【解析】
(1)將曲線用二倍角余弦整理,代入,即可求出其直角坐標(biāo)方程;根據(jù)條件,寫出直線參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)將直線參數(shù)方程的標(biāo)準(zhǔn)形式代入橢圓方程,利用直線參數(shù)的幾何意義,結(jié)合根與系數(shù)關(guān)系,即可求出結(jié)論.
(1)由得,,
將代入上式整理得,
∴曲線的直角坐標(biāo)方程為,
由題知直線的標(biāo)準(zhǔn)參數(shù)方程為(是參數(shù)).
(2)設(shè)直線與曲線交點對應(yīng)的參數(shù)分別為,
將直線的標(biāo)準(zhǔn)參數(shù)方程為(是參數(shù))
代入曲線方程整理得,
,,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李先生家住小區(qū),他工作在科技園區(qū),從家開車到公司上班路上有兩條路線(如圖),路線上有三個路口,各路口遇到紅燈的概率均為;路線上有兩個路口,各路口遇到紅燈的概率依次為.
(Ⅰ)若走路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標(biāo)準(zhǔn)方程__________;②△中,,則當(dāng)△面積的最大值為時,______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2是橢圓C:(a>b>0)的左、右焦點,過橢圓的上頂點的直線x+y=1被橢圓截得的弦的中點坐標(biāo)為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線l交橢圓于A,B兩點,當(dāng)△ABF2面積最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中點點P在線段A1B上.
(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大。
(2)若是的中點,直線與平面所成角的正弦值為,求線段BP的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標(biāo)準(zhǔn)方程__________;②△中,,則當(dāng)△面積的最大值為時,______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 證明:當(dāng)a>3時,關(guān)于x的方程f(x)= f(a)有三個實數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直四棱柱中,底面是邊長為6的正方形,點在線段上,且滿足,過點作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一副撲克牌有52張(不包括大小王),求:
(1)任取1張是紅桃的概率;
(2)任取2張是同花色的概率;
(3)任取3張,至少有2張是同花色的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com