【題目】已知圓C的方程為x2+y24x120,點(diǎn)P3,1.

1)求該圓的圓心坐標(biāo)及半徑;

2)求過點(diǎn)P的直線被圓C截得弦長(zhǎng)最大時(shí)的直線l的方程;

3)若圓C的一條弦AB的中點(diǎn)為P,求直線AB的方程.

【答案】1)圓心C2,0),半徑r42xy203x+y40

【解析】

1)由圓的標(biāo)準(zhǔn)方程得出圓心坐標(biāo)以及半徑;

2)弦長(zhǎng)最大即為直徑,直線l為圓心C與點(diǎn)P的連線所在直線方程;

3)弦AB中點(diǎn)與圓心連線與直線AB垂直,可得斜率,再由點(diǎn)P坐標(biāo)可得直線AB的方程.

1)由圓的方程為x2+y24x120,

則(x22+y216,

故圓心C2,0),半徑r4.

2)因?yàn)橹本被圓截得的弦長(zhǎng)最大時(shí)是過圓心的直線,所以直線l過點(diǎn)C,

由過點(diǎn)PC的斜率為,

所以直線l的方程為y1x3,

故直線l的方程為xy20.

3)由弦AB的中垂線為CP,則,

所以可得kAB=﹣1,

故直線AB的方程為:y1=(﹣1)(x3),

故直線AB的方程為x+y40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù),,恒成立,若數(shù)列滿足)且,則下列結(jié)論成立的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國(guó)道路交通安全法》第條規(guī)定:所有主干道路凡機(jī)動(dòng)車途經(jīng)十字口或斑馬線,無(wú)論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個(gè)月內(nèi),機(jī)動(dòng)車駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測(cè)該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高中男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計(jì)該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點(diǎn)值作代表);

2)若要從體重在, 內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再?gòu)倪@5人中隨機(jī)抽取3人,記體重在內(nèi)的人數(shù)為,求其分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.點(diǎn)(2,0)關(guān)于直線yx+1的對(duì)稱點(diǎn)為(﹣1,3

B.過(x1,y1),(x2,y2)兩點(diǎn)的直線方程為

C.經(jīng)過點(diǎn)(1,1)且在x軸和y軸上截距都相等的直線方程為x+y20xy0

D.直線xy40與兩坐標(biāo)軸圍成的三角形的面積是8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)解關(guān)于x的不等式x22mxm10;

(2)解關(guān)于x的不等式ax2(2a1)x20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好在拋物線的準(zhǔn)線上.

求橢圓的標(biāo)準(zhǔn)方程;

點(diǎn),在橢圓上,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn)當(dāng)運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓右頂點(diǎn)和上頂點(diǎn),且直線的斜率為,右焦點(diǎn)到直線的距離為

求橢圓的方程;

若直線 與橢圓交于兩點(diǎn),且直線的斜率之和為1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某學(xué)生在4月份開始進(jìn)人沖刺復(fù)習(xí)至高考前的5次大型聯(lián)考數(shù)學(xué)成績(jī)(分);

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)①請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

②若在4月份開始進(jìn)入沖刺復(fù)習(xí)前,該生的數(shù)學(xué)分?jǐn)?shù)最好為116分,并以此作為初始分?jǐn)?shù),利用上述回歸方程預(yù)測(cè)高考的數(shù)學(xué)成績(jī),并以預(yù)測(cè)高考成績(jī)作為最終成績(jī),求該生4月份后復(fù)習(xí)提高率.(復(fù)習(xí)提高率=,分?jǐn)?shù)取整數(shù))

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

同步練習(xí)冊(cè)答案