20.已知函數(shù)f(x)=lg(mx2+2mx+1),若f(x)的值域為R,則實數(shù)m的取值范圍是[1,+∞).

分析 根據(jù)函數(shù)的值域為R,則對數(shù)的真數(shù)式的取值范圍包含(0,+∞),由此可得m滿足的條件.

解答 解:令g(x)=mx2+2mx+1的值域為A,
∵函數(shù)f(x)=lg(mx2+2mx+1)的值域為R,
∴(0,+∞)?A,
當(dāng)m=0時,g(x)=1值域不是為R,不滿足條件;
當(dāng)m≠0時,$\left\{\begin{array}{l}{m>0}\\{4{m}^{2}-4m≥0}\end{array}\right.$,解得:m≥1,
故答案為:[1,+∞).

點評 本題考查的知識點是對數(shù)函數(shù)的定義域、值域與最值,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若θ是第四象限角,則下列結(jié)論正確的是(  )
A.sinθ>0B.cosθ<0C.tanθ>0D.sinθtanθ>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.復(fù)數(shù)z滿足(1-i)z=2,則z的虛部是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題的否定是真命題的是(  )
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.若f(x)是奇函數(shù),則f(-x)是奇函數(shù)
C.?x∈R,x2-x+$\frac{1}{4}$≥0D.任意兩個等邊三角形都是相似的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an},若點$(n,{a_n})(n∈{N^*})$在經(jīng)過點(6,8)的定直線l上,則數(shù)列{an}的前11項和為88.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=f(x)滿足2f(x)-f($\frac{1}{x}$)=x,則函數(shù)f(x)=$\frac{2}{3}x+\frac{1}{3x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.運動會上,有6名選手參加100米比賽,觀眾甲猜測:4道或5道的選手得第一名;觀眾乙猜:3道的選手不可能得第一名;觀眾丙猜測:1,2,6道中的一位選手得第一名;觀眾丁猜測:4,5,6道的選手都不可能得第一名.比賽后發(fā)現(xiàn)沒有并列名次,且甲、乙、丙、丁中只有1人猜對比賽結(jié)果,此人是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|-1≤x<2},B={x|x2<1},則A∩B=(  )
A.{x|1<x<2}B.{x|-1<x<1}C.{x|-1≤x<2}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若tanα=2,則sin2α-cos2α的值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案