4.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( 。
A.B.$\frac{9π}{2}$C.$\frac{125π}{6}$D.$\frac{32π}{3}$

分析 先保證截面圓與△ABC內(nèi)切,記圓O的半徑為r,由等面積法得(AC+AB+BC)r=6×8,解得r=2.由于三棱柱高為5,此時可以保證球在三棱柱內(nèi)部,球的最大半徑為2,由此能求出結(jié)果.

解答 解:如圖,由題知,球的體積要盡可能大時,球需與三棱柱內(nèi)切.
先保證截面圓與△ABC內(nèi)切,記圓O的半徑為r,
則由等面積法得${S_{△ABC}}=\frac{1}{2}AC\;•\;r+\frac{1}{2}AB\;•\;r+\frac{1}{2}BC\;•\;r=\frac{1}{2}×6×8$,
所以(AC+AB+BC)r=6×8,又AB=6,BC=8,
所以AC=10,所以r=2.由于三棱柱高為5,此時可以保證球在三棱柱內(nèi)部,
若r增大,則無法保證球在三棱柱內(nèi),
故球的最大半徑為2,所以$V=\frac{32π}{3}$.
故選:D.

點評 本題考查球的最大體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x-1,-1≤x<0}\\{-2x+1,0<x≤1}\end{array}\right.$,則f(f(-1))=-1,|f(x)|$<\frac{1}{2}$的解集為(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(λ,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某樓盤按國家去庫存的要求,據(jù)市場調(diào)查預(yù)測,降價銷售.今年110平方米套房的銷售將以每月10%的增長率增長;90平方米套房的銷售將每月遞增10套.已知該地區(qū)今年1月份銷售110平方米套房和90平方米套房均為20套,據(jù)此推測該地區(qū)今年這兩種套房的銷售總量約為1320套(參考數(shù)據(jù):1.111≈2.9,1.112≈3.1,1.113≈3.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直線l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C的兩個交點分別為A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z滿足(1+3i)z=i-3,則z等于( 。
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),點(4,-2)在它的一條漸近線上,則離心率等于( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上,且最小正周期為π的函數(shù)是( 。
A.y=sin|x|B.y=cos|x|C.y=|sinx|D.y=|cos2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在空間中,下列命題正確的是( 。
A.如果平面α⊥平面β,任取直線m?α,那么必有m⊥β
B.如果直線m∥平面α,直線n?α內(nèi),那么m∥n
C.如果直線m∥平面α,直線n∥平面α,那么m∥n
D.如果平面α外的一條直線m垂直于平面α內(nèi)的兩條相交直線,那么m⊥α

查看答案和解析>>

同步練習(xí)冊答案