如果函數(shù)f(x)對任意的實(shí)數(shù)x,都有f(1+x)=f(-x),且當(dāng)x≥數(shù)學(xué)公式時(shí),f(x)=log2(3x-1),那么函數(shù)f(x)在[-2,0]上的最大值與最小值之和為


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    -1
C
分析:由題意可得,函數(shù)f(x)的圖象關(guān)于直線x=對稱,區(qū)間[-2,0]關(guān)于直線x=的對稱區(qū)間為[1,3].再由f(x)在在[1,3]上是增函數(shù),求得函數(shù)取得最大值
和最小值,從而求得函數(shù)f(x)在[-2,0]上的最大值與最小值之和.
解答:由題意可得f(1-x)=f(x),故函數(shù)f(x)的圖象關(guān)于直線x=對稱,區(qū)間[-2,0]關(guān)于直線x=的對稱區(qū)間為[1,3].
再由當(dāng)x≥時(shí),f(x)=log2(3x-1),可得函數(shù)f(x)在在[1,3]上是增函數(shù),故當(dāng)x=1時(shí),函數(shù)取得最小值為1,當(dāng)x=3時(shí),函數(shù)取得最大值為3,
故函數(shù)f(x)在[-2,0]上的最大值與最小值之和為4,
故選C.
點(diǎn)評:本題主要考查函數(shù)的圖象的對稱性、函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“n階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:022

已知函數(shù)y=f(x),設(shè)x0是定義域內(nèi)任一點(diǎn),如果對x0附近的所有點(diǎn)x,都有f(x)<f(x0),則稱函數(shù)f(x)在點(diǎn)x0處取_________,記作_________.并把x0稱為函數(shù)f(x)的一個(gè)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記數(shù)學(xué)公式.若對定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個(gè)x,總有數(shù)學(xué)公式,則稱f(x)為“n階不減函數(shù)”(數(shù)學(xué)公式為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若數(shù)學(xué)公式既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案