直線與橢圓交于兩點(diǎn),已知
,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn)
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)∵  ∴   ∴橢圓的方程為   
(Ⅱ)依題意,設(shè)的方程為
  顯然,
, 由已知得:
                  
,解得  
點(diǎn)評:橢圓的幾何性質(zhì)是?贾R點(diǎn),直線與橢圓相交時常聯(lián)立方程,利用韋達(dá)定理找到根與系數(shù)的關(guān)系,將已知的向量轉(zhuǎn)化為與方程的根有關(guān)的關(guān)系式
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線,點(diǎn)、分別為雙曲線的左、右焦點(diǎn),動點(diǎn)軸上方.
(1)若點(diǎn)的坐標(biāo)為是雙曲線的一條漸近線上的點(diǎn),求以、為焦點(diǎn)且經(jīng)過點(diǎn)的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點(diǎn),從點(diǎn)向(2)中圓引一條切線,切點(diǎn)為. 問是否存在一個定點(diǎn),恒有?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),使得?若存在,試求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點(diǎn)且一個焦點(diǎn)為F(,0),直線與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知橢圓的離心率為是橢圓的左右頂點(diǎn),是橢圓的上下頂點(diǎn),四邊形的面積為.
(1)求橢圓的方程;
(2)圓兩點(diǎn).當(dāng)圓心與原點(diǎn)的距離最小時,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的一個焦點(diǎn)的直線與橢圓交于兩點(diǎn),則、 與橢圓的另一焦點(diǎn)構(gòu)成,那么的周長是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線的斜率為2且過拋物線的焦點(diǎn)F,又與軸交于點(diǎn)A,為坐標(biāo)原點(diǎn),若的面積為4,則拋物線的方程為:
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的左右焦點(diǎn)為,P為雙曲線右支上
的任意一點(diǎn),若的最小值為8a,則雙曲線的離心率的取值范圍是        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過點(diǎn)T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案