13.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}$,則2y•($\frac{1}{4}$)x的最小值是(  )
A.1B.2C.8D.4

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}$作出可行域如圖,
2y•($\frac{1}{4}$)x=2y-2x
令z=y-2x,則y=2x+z,
由圖可知,當(dāng)直線(xiàn)y=2x+z,過(guò)B(0,2)時(shí)直線(xiàn)在y軸上的截距最大,z有最小值,z=2.
則2y•($\frac{1}{4}$)x的最小值是:22=4.
故選:D

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線(xiàn)性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在正四棱錐P-ABCD中,O為正方形ABCD的中心,$\overrightarrow{PE}$=λ$\overrightarrow{EO}$(2≤λ≤4),且平面ABE與直線(xiàn)PD交于F,$\overrightarrow{PF}$=f(λ)$\overrightarrow{PD}$,則( 。
A.f(λ)=$\frac{λ}{λ+2}$B.f(λ)=$\frac{2λ}{λ+6}$C.f(λ)=$\frac{3λ}{λ+7}$D.f(λ)=$\frac{4λ}{λ+9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)$f(x)=sin({2x+\frac{π}{3}})$.
(1)若$x∈({-\frac{π}{6},0}]$,求$4f(x)+\frac{1}{f(x)}$的最小值,并確定此時(shí)x的值;
(2)若$a∈({-\frac{π}{2},0}),f({\frac{a}{2}+\frac{π}{3}})=\frac{{\sqrt{5}}}{5}$,求f(a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)p:f(x)=1+ax,在(0,2]上f(x)≥0恒成立;q:函數(shù)g(x)=ax-$\frac{a}{x}$+2lnx在其定義域上存在極值.
(1)若p為真命題,求實(shí)數(shù)a的取值范圍;
(2)如果“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義在R上的函數(shù)f(x)滿(mǎn)足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(1)求函數(shù)f(x)的解析式;         
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當(dāng)x>y>e-1時(shí),求證:ex-y>$\frac{ln(x+1)}{ln(y+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)化簡(jiǎn)$\frac{{{{sin}^2}(π+α)cos(π+α)}}{{tan(-α-2π)tan(π+α){{cos}^3}(-π-α)}}$
(2)已知sinα=-$\frac{4}{5}$,且α∈(-π,-$\frac{π}{2}$),求cosα+2tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)集合U={x|x2-3x+2=0,x∈R},則集合U的子集的個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下面說(shuō)法正確( 。
①演繹推理是由一般到特殊的推理;
②演繹推理結(jié)論的正誤與大前提、小前提和推理形式有關(guān);
③演繹推理一般模式是“三段論”形式; 
④演繹推理得到的結(jié)論一定是正確的.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)集合S={0,1,2,3,…,n},則集合S中任意兩個(gè)元素的差的絕對(duì)值的和為$\frac{1}{6}$n3+$\frac{1}{2}$n2+$\frac{1}{3}$n..

查看答案和解析>>

同步練習(xí)冊(cè)答案