如圖,在三棱錐S-ABC中,SA⊥平面ABC,AB⊥BC,DE垂直平分SC,分別交AC、SC于D、E,且SA=AB=a,BC=

(1)求證:SC⊥平面BDE;

(2)求平面BDE與平面BDC所成二面角的大。

答案:
解析:


提示:

  分析:(1)根據(jù)已知條件提供的數(shù)量關(guān)系通過計算證明有關(guān)線線垂直.(2)利用已得的垂直關(guān)系找出二面角的平面角.

  解題心得:根據(jù)二面角平面角的定義,二面角的平面角所在平面和二面角的棱垂直,因此找出二面角所在棱的一個垂面是作二面角平面角的一種常用和基本的方法.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求證:AB⊥BC;
(2)若設(shè)二面角S-BC-A為45°,SA=BC,求二面角A-SC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點.
(Ⅰ)求點B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)如圖,在三棱錐S-ABC中,SA=SC=AB=BC,則直線SB與AC所成角的大小是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都一模)如圖,在三棱錐S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,點P是SC的中點,則異面直線SA與PB所成角的正弦值為( 。

查看答案和解析>>

同步練習(xí)冊答案