設(shè)函數(shù)f(x)對(duì)于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時(shí)f(x)<0,f(1)=-2.
(1)求f(0);
(2)證明f(x)是奇函數(shù);
(3)試問在x∈[-3,3]時(shí)f(x)是否有最大、最小值?如果有,請(qǐng)求出來,如果沒有,說明理由;
(4)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)
證明:(1)由f(x+y)=f(x)+f(y),
得f[x+(-x)]=f(x)+f(-x),
∴f(x)+f(-x)=f(0).
又f(0+0)=f(0)+f(0),∴f(0)=0.
(2)從而有f(x)+f(-x)=0.∴f(-x)=-f(x).
∴f(x)是奇函數(shù).
(3)任取x1、x2∈R,且x1<x2,
則f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1).
由x1<x2,∴x2-x1>0.∴f(x2-x1)<0.
∴-f(x2-x1)>0,即f(x1)>f(x2),
從而f(x)在R上是減函數(shù).
由于f(x)在R上是減函數(shù),
故f(x)在[-3,3]上的最大值是f(-3),
最小值為f(3).由f(1)=-2,
得f(3)=f(1+2)=f(1)+f(2)
=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)
=3×(-2)=-6,f(-3)=-f(3)=6.
∴最大值為6,最小值為-6.
(4)由
1
2
f(x2)-f(x)>
1
2
f(3x)
,f
(x2)-f(3x)>2f(x),
由已知得:f[2(x)]=2f(x)∴f(x2-3x)>f(2x),
由(2)中的單調(diào)性轉(zhuǎn)化為x2-3x<2x.即x2-5x<0,
∴x∈(0,5).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在上的函數(shù) ,若關(guān)于
方程,有3個(gè)不同實(shí)數(shù)解,且,則下列說法中正確的是:(   )
               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某鄉(xiāng)鎮(zhèn)現(xiàn)有人口1萬,經(jīng)長(zhǎng)期貫徹國(guó)家計(jì)劃生育政策,目前每年出生人數(shù)與死亡人數(shù)分別為年初人口的0.8%和1.2%,則經(jīng)過2年后,該鎮(zhèn)人口數(shù)應(yīng)為______萬.(結(jié)果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)實(shí)數(shù)x,y滿足條件
x+y-2≥0
y≤x-1
y≥0
,則z=
y
x
的取值范圍是(  )
A.[0,+∞)B.[0,
3
2
]
C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在(0,+∞)上的增函數(shù)f(x)滿足:對(duì)任意的x>0,y>0都有f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)請(qǐng)舉出一個(gè)符合條件的函數(shù)f(x);
(3)若f(2)=1,解不等式f(x2-5)-f(x)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若定義在R上的函數(shù)對(duì)任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且當(dāng)x>0時(shí),f(x)>1,若f(4)=5,則不等式f(3m-2)<3的解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a∈(0,+∞),函數(shù)f(x)=ax2+2ax+1,若f(m)<0,比較大。篺(m+2)________1(用“<”“=”或“>”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
6-x2(x≤6)
x2+x-2(x>6)
,則f(
6
f(2)
)的值為( 。
A.
15
16
B.-
27
16
C.
8
9
D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案