【題目】若函數,.
(Ⅰ)求的單調區(qū)間和極值;
(Ⅱ)證明:若存在零點,則在區(qū)間上僅有一個零點.
【答案】(Ⅰ)的單調遞減區(qū)間是,單調遞增區(qū)間是;在處取得極小值;(Ⅱ)證明見解析.
【解析】
試題分析:(Ⅰ)求單調區(qū)間和極值,先求定義域,再求導數,在上,的解為,探討在和上的正負,確定的單調性,極值;(Ⅱ)首先由零點存在,知最小值,從而,因此在是單調遞減,且,因此結論易證.
試題解析:(Ⅰ)由,得
.
由解得.與在區(qū)間上的情況如下:
所以,的單調遞減區(qū)間是,單調遞增區(qū)間是;
在處取得極小值.
(Ⅱ)由(Ⅰ)知,在區(qū)間上的最小值為.
因為存在零點,所以,從而.
當時,在區(qū)間上單調遞減,且,
所以是在區(qū)間上的唯一零點.
當時,在區(qū)間上單調遞減,且,,
所以在區(qū)間上僅有一個零點.
綜上可知,若存在零點,則在區(qū)間上僅有一個零點.
科目:高中數學 來源: 題型:
【題目】側棱垂直于底面的棱柱叫做直棱柱.
側棱不垂直于底面的棱柱叫作斜棱柱.
底面是正多邊形的直棱柱叫作正棱柱.
底面是平行四邊形的四棱柱叫作平行六面體.
側棱與底面垂直的平行六面體叫作直平行六面體.
底面是矩形的直平行六面體叫作長方體.
棱長都相等的長方體叫作正方體.
請根據上述定義,回答下面的問題(填“一定”、“不一定”“一定不”):
(1)直四棱柱________是長方體;
(2)正四棱柱________是正方體.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數據:
房屋面積x(m2) | 115 | 110 | 80 | 135 | 105 |
銷售價格y(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數據對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線.
(參考公式=,=+,其中=60 975,=12 952)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率,點在橢圓上,、分別為橢圓的左右頂點,過點作軸交的延長線于點,為橢圓的右焦點.
(Ⅰ)求橢圓的方程及直線被橢圓截得的弦長;
(Ⅱ)求證:以為直徑的圓與直線相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知均為直線,為平面,下面關于直線與平面關系的命題:
①任意給定一條直線與一個平面,則平面內必存在與垂直的直線;
②內必存在與相交的直線;
③,必存在與都垂直的直線;
其中正確命題的個數為( )
A.0個 B.1個
C.2個 D.3個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】社區(qū)服務是綜合實踐活動課程的重要內容,某市教育部門在全市高中學生中隨機抽取200位學生參加社區(qū)服務的數據,按時間段,,,,(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(1)求抽取的200位學生中,參加社區(qū)服務時間不少于90小時的學生人數,并估計從全市高中學生中任意選取一人,其參加社區(qū)服務時間不少于90小時的概率;
(2)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區(qū)服務時間不少于90小時的人數,試求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數是奇函數,函數的定義域為.
(1)求的值;
(2)若在上遞減,根據單調性的定義求實數的取值范圍;
(3)在(2)的條件下,若函數在區(qū)間上有且僅有兩個不同的零點,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com