【題目】已知函數(shù)圖象上兩相鄰對(duì)稱(chēng)軸之間的距離為;_______________;

)在①的一條對(duì)稱(chēng)軸;②的一個(gè)對(duì)稱(chēng)中心;③的圖象經(jīng)過(guò)點(diǎn)這三個(gè)條件中任選一個(gè)補(bǔ)充在上面空白橫線(xiàn)中,然后確定函數(shù)的解析式;

)若動(dòng)直線(xiàn)的圖象分別交于、兩點(diǎn),求線(xiàn)段長(zhǎng)度的最大值及此時(shí)的值.

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

【答案】)選①或②或③,;()當(dāng)時(shí),線(xiàn)段的長(zhǎng)取到最大值.

【解析】

)先根據(jù)題中信息求出函數(shù)的最小正周期,進(jìn)而得出.

選①,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;

選②,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;

選③,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;

)令,利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式,利用正弦型函數(shù)的基本性質(zhì)求出上的最大值和最小值,由此可求得線(xiàn)段長(zhǎng)度的最大值及此時(shí)的值.

)由于函數(shù)圖象上兩相鄰對(duì)稱(chēng)軸之間的距離為,則該函數(shù)的最小正周期為,,此時(shí).

若選①,則函數(shù)的一條對(duì)稱(chēng)軸,則,

,,當(dāng)時(shí),

此時(shí),;

若選②,則函數(shù)的一個(gè)對(duì)稱(chēng)中心,則,

,,當(dāng)時(shí),

此時(shí),;

若選③,則函數(shù)的圖象過(guò)點(diǎn),則,

,,

,解得,此時(shí),.

綜上所述,;

)令,,

,,當(dāng)時(shí),即當(dāng)時(shí),

線(xiàn)段的長(zhǎng)取到最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)證明當(dāng)n≥2時(shí),數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;

Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn

Ⅲ)對(duì)任意nN*,使得 恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為有效預(yù)防新冠肺炎對(duì)老年人的侵害,某醫(yī)院到社區(qū)檢查老年人的體質(zhì)健康情況.從該社區(qū)全體老年人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,根據(jù)測(cè)試成績(jī)(百分制)繪制莖葉圖如下.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),可知成績(jī)不低于80分為優(yōu)良,且體質(zhì)優(yōu)良的老年人感染新冠肺炎的可能性較低.

(Ⅰ)從抽取的12人中隨機(jī)選取3人,記表示成績(jī)優(yōu)良的人數(shù),求的分布列及數(shù)學(xué)期望;

(Ⅱ)將頻率視為概率,根據(jù)用樣本估計(jì)總體的思想,在該社區(qū)全體老年人中依次抽取10人,若抽到人的成績(jī)是優(yōu)良的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程選講.

在平面直角坐標(biāo)系中,曲線(xiàn)為參數(shù),實(shí)數(shù)),曲線(xiàn)

為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,x R其中a>0.

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下是我們常見(jiàn)的空間幾何體.

1 2 3 4 5 6 7 8 9)(10

11

1)以上幾何體中哪些是棱柱?

2)一個(gè)幾何體為棱柱的充要條件是什么?

3)如何求以上幾何體的表面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù),

(1)設(shè),求的單調(diào)區(qū)間;

(2)設(shè)導(dǎo)數(shù),

(i)證明:當(dāng),時(shí),;

(ii)設(shè)關(guān)于的方程的根為,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案