【題目】如圖,在邊長為2的正方形ABCD中,E為線段AB的中點,將△ADE沿直線DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F為線段A′C的中點.
(Ⅰ)求證:BF∥平面A′DE;
(Ⅱ)求直線A′B與平面A′DE所成角的正切值.
【答案】(Ⅰ)詳見解析(Ⅱ)
【解析】
(Ⅰ)取A'D的中點M,連接 FM,EM,由已知得四邊形BFME為平行四邊形,由此能證明BF∥平面A'DE.
(Ⅱ)在平面BCDE內(nèi)作BN⊥DE,交DE的延長線于點N,則BN⊥平面A'DE,連接A'N,∠BA'N為A'B與平面A'DE所成的角,由此能求出直線A'B與平面A'DE所成角的正切值.
(Ⅰ)證明:取A'D的中點M,連接 FM,EM.
∵F為A'C中點,∴FM∥CD且,
∴BE∥FM且BE=FM,∴四邊形BFME為平行四邊形,∴BF∥EM,
又EM平面A'DE,BF平面A'DE,
∴BF∥平面A'DE.
(Ⅱ)在平面BCDE內(nèi)作BN⊥DE,交DE的延長線于點N,
∵平面A'DE⊥平面BCDE,平面A'DE∩平面BCDE=DE,
∴BN⊥平面A'DE,連接A'N,
則∠BA'N為A'B與平面A'DE所成的角,
∵△BNE∽△DAE,BE=1,,∴.
在△A'DE中作A'P⊥DE垂足為P,∵A'E=1,A'D=2,
∴,∵,∴在直角△A'PN中,,
又,∴,
∴在直角△A'BN中,,
∴直線A'B與平面A'DE所成角的正切值為.
科目:高中數(shù)學 來源: 題型:
【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報告宣講團,要求甲、乙、丙、丁四個學校中,每校至多選出1名.
(1)請列出十九大報告宣講團組成人員的全部可能結果;
(2)求教師被選中的概率;
(3)求宣講團中沒有乙校教師代表的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市關系要好的四個家庭各有兩個小孩共8人,準備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4人,(乘同一輛車的4名小孩不考慮位置差異).
(1)共有多少種不同的乘坐方式?
(2)若戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個家庭的乘坐方式共有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標;
(Ⅱ)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解一家企業(yè)生產(chǎn)的某類產(chǎn)品的使用壽命(單位:小時),現(xiàn)從中隨機抽取一定數(shù)量的產(chǎn)品進行測試,繪制頻率分布直方圖如圖所示.
(1)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,估算這批產(chǎn)品的平均使用壽命;
(2)已知該企業(yè)生產(chǎn)的這類產(chǎn)品有甲、乙兩個系列,產(chǎn)品使用壽命不低于60小時為合格,合格產(chǎn)品中不低于90小時為優(yōu)異,其余為一般.現(xiàn)從合格產(chǎn)品中,用分層抽樣的方法抽取70件,其中甲系列有35件(1件優(yōu)異).請完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認為產(chǎn)品優(yōu)異與系列有關?
甲系列 | 乙系列 | 合計 | |
優(yōu)異 | |||
一般 | |||
合計 |
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.過拋物線上一點作的切線交橢圓于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個班共有學生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(Ⅰ)試估計班學生人數(shù);
(Ⅱ)從班和班抽出來的學生中各選一名,記班選出的學生為甲,班選出的學生為乙,若學生鍛煉相互獨立,求甲的鍛煉時間大于乙的鍛煉時間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com