【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題P:n∈N,2n>1000,則﹣P:n∈N,2n≤1000
D.命題“x∈(﹣∞,0),2x<3x”是真命題

【答案】D
【解析】解:因?yàn)槊}“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”,所以A正確; 由a=2能得到函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù),反之,函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù),a不一定大于2,所以“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件,所以選項(xiàng)B正確;
命題P:n∈N,2n>1000,的否定為¬P:n∈N,2n≤1000,所以選項(xiàng)C正確;
因?yàn)楫?dāng)x<0時(shí)恒有2x>3x , 所以命題“x∈(﹣∞,0),2x<3x”為假命題,所以D不正確.
故選D.
【考點(diǎn)精析】本題主要考查了全稱命題和特稱命題的相關(guān)知識(shí)點(diǎn),需要掌握全稱命題,,它的否定,;全稱命題的否定是特稱命題;特稱命題,它的否定,;特稱命題的否定是全稱命題才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n和為Sn , a1=1,Sn=nan﹣2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+ + +…+ +2n=1124?若存在,求出n的值; 若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)cn= (n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn (m∈Z),對(duì)n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知F1 , F2是一對(duì)相關(guān)曲線的焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對(duì)相關(guān)曲線中橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2分別是橢圓C: +y2=1的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)該橢圓上的一點(diǎn), =﹣ ,求點(diǎn)P的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a﹣c)cosB=bcosC,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是偶函數(shù),則下列結(jié)論可能成立的是(
A. ??
B.
C. ??
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過(guò) x 的部分按平價(jià)收費(fèi),超出 x 的部分按議價(jià)收費(fèi).為了了解全市居民用水量的分布情況,通過(guò)抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn) x(噸),估計(jì) x 的值,并說(shuō)明理由;
(Ⅲ)已知平價(jià)收費(fèi)標(biāo)準(zhǔn)為 4 元/噸,議價(jià)收費(fèi)標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時(shí),估計(jì)該市居民的月平均水費(fèi).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1 , F2 , 且|F1F2|=2,點(diǎn)(1, )在橢圓C上.
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為 ,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案