【題目】如圖,曲線(xiàn)由左半橢圓和圓軸右側(cè)的部分連接而成, , 的公共點(diǎn),點(diǎn) (均異于點(diǎn) )分別是, 上的動(dòng)點(diǎn).

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線(xiàn)過(guò)點(diǎn),且, ,求半橢圓的離心率.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】試題分析:(1)由題意可知,當(dāng)為半橢圓與軸的左交點(diǎn), 為圓與軸的右交點(diǎn)時(shí), 會(huì)取得最大值,(2)設(shè)直線(xiàn)方程與圓組方程組,由韋達(dá)用k表示出Q點(diǎn)坐標(biāo),由,用k表示P點(diǎn)坐標(biāo),再由代入向量坐標(biāo)運(yùn)算,可求得斜率k及P點(diǎn)坐標(biāo),可得橢圓方程及離心率。

試題解析;(Ⅰ)由已知得:當(dāng)為半橢圓與軸的左交點(diǎn), 為圓與軸的右交點(diǎn)時(shí), 會(huì)取得最大值,即,解得,由圖像可得,即,故半橢圓的方程為

(Ⅱ)設(shè)直線(xiàn)方程為, , ,聯(lián)立

,故 , ,又,

, ,故 , ,

,且 ,

解得,故,代入解得,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)長(zhǎng)期觀察得到:在交通繁忙的時(shí)段內(nèi),某公路汽車(chē)的車(chē)流量千輛/小時(shí)與汽車(chē)的平均速度千米/小時(shí)之間的函數(shù)關(guān)系為

1在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí),車(chē)流量最大,最大車(chē)流量為多少?精確到01千輛/小時(shí)

2若要求在該時(shí)段內(nèi)車(chē)流量超過(guò)10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列滿(mǎn)足, ,記的前項(xiàng)和為,求證: .

【答案】I;(II;(III證明見(jiàn)解析.

【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,先證明因此時(shí), 上恒成立,再證明當(dāng)時(shí)不滿(mǎn)足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項(xiàng)和為,結(jié)合(II)可得,各式相加即可得結(jié)論.

試題解析:)由,得.所以

,解得(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .

)由得,

當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,因此.

,則,令,得.

當(dāng)時(shí), , ,所以,即有.

因此時(shí), 上恒成立.

當(dāng)時(shí), , 上為減函數(shù),在上為增函數(shù),

,不滿(mǎn)足題意.

綜上,不等式上恒成立時(shí),實(shí)數(shù)的取值范圍是.

III)證明:由知數(shù)列的等差數(shù)列,所以

所以

由()得, 上恒成立.

所以. 將以上各式左右兩邊分別相加,得

.因?yàn)?/span>

所以

所以.

型】解答
結(jié)束】
22

【題目】已知直線(xiàn), (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的直角坐標(biāo)方程為.

(Ⅰ)將曲線(xiàn)的直角坐標(biāo)方程化為極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線(xiàn)與曲線(xiàn)的交點(diǎn)為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)分會(huì)場(chǎng)之一落戶(hù)黔東南州黎平縣肇興侗寨,黔東南州某中學(xué)高二社會(huì)實(shí)踐小組就社區(qū)群眾春晚節(jié)目的關(guān)注度進(jìn)行了調(diào)查,隨機(jī)抽取80名群眾進(jìn)行調(diào)查,將他們的年齡分成6段: ,,,, , ,得到如圖所示的頻率分布直方圖.問(wèn):

(Ⅰ)求這80名群眾年齡的中位數(shù);

(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機(jī)抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn),點(diǎn)是單位圓與軸的正半軸的交點(diǎn).

1)若,求.

2)已知,,若是等邊三角形,求的面積.

3)設(shè)點(diǎn)為單位圓上的動(dòng)點(diǎn),點(diǎn)滿(mǎn)足,,求的取值范圍.當(dāng)時(shí),求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線(xiàn)截直線(xiàn)所得線(xiàn)段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在邊長(zhǎng)為8的正三角形ABC中,E,F依次是AB,AC的中點(diǎn),,D,HG為垂足,若將AD旋轉(zhuǎn),求陰影部分形成的幾何體的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)經(jīng)過(guò)點(diǎn)

(1)若原點(diǎn)到直線(xiàn)的距離為2,求直線(xiàn)的方程;

(2)若直線(xiàn)被兩條相交直線(xiàn)所截得的線(xiàn)段恰被點(diǎn)平分,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案