分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于m,n的方程組,求出m,n的值,從而求出f(x)的表達式,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞增區(qū)間即可;
(2)求出f(x)的導(dǎo)數(shù),通過討論n的范圍,得到n≥0時,不合題意,n<0時,問題轉(zhuǎn)化為求使f(x2)>0的實數(shù)m的取值范圍,構(gòu)造函數(shù)g(x)=lnx+$\frac{x-1}{2}$,求出g(x)的單調(diào)性,從而求出n的范圍即可.
解答 解:(1)由題意得:f′(x)=$\frac{m}{x}$+4nx+1,f′(1)=1+m+4n,
由f(1)=-1,得:k=-2,
∴$\left\{\begin{array}{l}{f′(1)=1+m+4n=-2}\\{f(1)=2n+1=-1}\end{array}\right.$,解得:m=1,n=-1,
∴f(x)=lnx-2x2+x,
∴f′(x)=$\frac{-{4x}^{2}+x+1}{x}$(x>0),
令f′(x)>0,解得:0<x<$\frac{1+\sqrt{17}}{8}$,
∴f(x)在(0,$\frac{1+\sqrt{17}}{8}$)遞增;
(2)由題意得:f(x)=lnx+2nx2+x,f′(x)=$\frac{4{nx}^{2}+x+1}{x}$(x>0),
①n≥0時,f′(x)>0在(0,+∞)恒成立,故無極值,
②n<0時,令f′(x)=0,得:4nx2+x+1=0,則△=1-16n>0,x1x2=$\frac{1}{4n}$<0,
不妨設(shè)x1<0,x2>0,則f′(x)=$\frac{4n(x{-x}_{1})(x{-x}_{2})}{x}$,即求使f(x2)>0的實數(shù)m的取值范圍,
由$\left\{\begin{array}{l}{4{{nx}_{2}}^{2}{+x}_{2}+1=0}\\{l{nx}_{2}+2{{nx}_{2}}^{2}{+x}_{2}>0}\end{array}\right.$,得:lnx2+$\frac{{x}_{2}-1}{2}$>0,
構(gòu)造函數(shù)g(x)=lnx+$\frac{x-1}{2}$,則g′(x)=$\frac{1}{x}$+$\frac{1}{2}$>0,
∴g(x) 在(0,+∞)遞增,
由g(1)=0,由g(x)>0,解得:x>1,
即x2=$\frac{-1-\sqrt{1-16n}}{8n}$>1,解得:-$\frac{1}{2}$<n<0,
由①②得:n∈(-$\frac{1}{2}$,0).
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查分類討論思想,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若T2n+1>0,則a1>0 | B. | 若T2n+1<0,則a1<0 | ||
C. | 若T3n+1<0,則a1>0 | D. | 若T4n+1<0,則a1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,3,4} | B. | {x|x>1} | C. | {x|x<5} | D. | (1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sinx | B. | y=sin2x | C. | y=|cosx| | D. | y=|sinx| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{13}{e^3},\frac{7}{e^2}]$ | B. | $(\frac{13}{e^3},\frac{7}{e^2}]$ | C. | $[\frac{7}{e^2},\frac{3}{e}]$ | D. | $(\frac{7}{e^2},\frac{3}{e}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com