【題目】橢圓: 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .
(1)求橢圓的標準方程;
(2)設(shè)橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , , .直角梯形可以通過直角梯形以直線為軸旋轉(zhuǎn)得到,且平面平面.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2017/12/20/1842736631291904/1845869604462592/STEM/592e486e595e40bf846fae2bfa16ac59.png]
(I)求證: .
(II)求直線和平面所成角的正弦值.
(III)設(shè)為的中點, , 分別為線段, 上的點(都不與點重合).若直線平面,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最小值;
(2)若,不等式恒成立,求的取值范圍;
(3)若,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點, 為的中點,且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 為實數(shù),函數(shù),函數(shù).
(1) 當時,令,若恒成立,求實數(shù)的取值范圍;
(2) 當時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論的單調(diào)性;
(2)當時,若函數(shù)的圖象全部在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的條件下,是否存在實常數(shù)和,使得和?若存在,求出和的值.若不存在,說明理由;
(Ⅲ)設(shè)有兩個零點,且成等差數(shù)列,試探究值的符號.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com