【題目】如圖在矩形ABCD中,AB=5,AD=2,點E在線段AB上,且BE=1,將△ADE沿DE折起到A1DE的位置,使得平面A1DE⊥平面BCDE.
(1)求證:CE⊥平面A1DE;
(2)線段A1C上是否存在一點F,使得BF//平面A1DE?說明理由.
【答案】(1)詳見解析;(2)存在點F(A1C的五等分點靠近點A1),使得BF//平面A1DE,理由詳見解析.
【解析】
(1)因為平面A1DE⊥平面BCDE,所以要證明CE⊥平面A1DE,只需證明CE⊥DE即可;
(2)取CD上點M,使DM=1=BE,易得BM∥平面A1DE,在△A1DC內(nèi),作MF∥A1D交A1C于F,易得MF∥平面A1DE,進(jìn)一步得到平面FMB∥平面A1DE,即可得到答案.
(1)證明:如圖,在矩形ABCD中,AB=5,AD=2,
點E在線段AB上,且BE=1,∴,
,CD=5,
∴,∴CE⊥DE,
∵平面A1DE⊥平面BCDE,平面A1DE平面BCDE,平面BCDE,
∴CE⊥平面A1DE.
(2)取CD上點M,使DM=1=BE,又,
∴ DMBE為平行四邊形,∴,又DE平面,平面,
∴平面A1DE,
在△A1DC內(nèi),作交A1C與F,因為平面,平面,
所以平面A1DE,又,∴平面平面A1DE,
又平面FMB,∴平面A1DE,
,,
故存在點F(A1C的五等分點靠近點A1),使得平面A1DE.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務(wù),則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.若樣本數(shù)據(jù),,…,的平均數(shù)為5,則樣本數(shù)據(jù),,…,的平均數(shù)為10
B.用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加某項活動,若抽取的學(xué)號為5,16,27,38,49,則該班學(xué)生人數(shù)可能為60
C.某種圓環(huán)形零件的外徑服從正態(tài)分布(單位:),質(zhì)檢員從某批零件中隨機抽取一個,測得其外徑為,則這批零件不合格
D.對某樣本通過獨立性檢驗,得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,則在該樣本吸煙的人群中有的人可能患肺病
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月1日起鄭州市施行《鄭州市城市生活垃圾分類管理辦法》,鄭州將正式進(jìn)入城市生活垃圾分類時代.為了增強社區(qū)居民對垃圾分類知識的了解,積極參與到垃圾分類的行動中,某社區(qū)采用線下和線上相結(jié)合的方式開展了一次200名轄區(qū)成員參加的“垃圾分類有關(guān)知識”專題培訓(xùn).為了了解參訓(xùn)成員對于線上培訓(xùn)、線下培訓(xùn)的滿意程度,社區(qū)居委會隨機選取了40名轄區(qū)成員,將他們分成兩組,每組20人,分別對線上、線下兩種培訓(xùn)進(jìn)行滿意度測評,根據(jù)轄區(qū)成員的評分(滿分100分)繪制了如圖所示的莖葉圖.
(1)根據(jù)莖葉圖判斷轄區(qū)成員對于線上、線下哪種培訓(xùn)的滿意度更高,并說明理由.
(2)求這40名轄區(qū)成員滿意度評分的中位數(shù),并將評分不超過、超過分別視為“基本滿意”“非常滿意”兩個等級.
(ⅰ)利用樣本估計總體的思想,估算本次培訓(xùn)共有多少轄區(qū)成員對線上培訓(xùn)非常滿意;
(ⅱ)根據(jù)莖葉圖填寫下面的列聯(lián)表.
基本滿意 | 非常滿意 | 總計 | |
線上培訓(xùn) | |||
線下培訓(xùn) | |||
總計 |
并根據(jù)列聯(lián)表判斷能否有99.5%的把握認(rèn)為轄區(qū)成員對兩種培訓(xùn)方式的滿意度有差異?
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,長軸長為4,、分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于,兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記、的面積分別為、,若,求的值;
(Ⅲ)設(shè)線段的中點為,直線與直線相交于點,記直線、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點,,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)為上一點(軸上方),直線,分別交橢圓于,兩點,若,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:中,,,,的面積為1,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點,、是橢圓的左右兩個焦點,直線、分別交于、,是否存在點,使,若存在,求出點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com