已知橢圓,通徑長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過(guò)點(diǎn)Q(-1,0)的直線(xiàn)l交橢圓于A,B兩點(diǎn),交直線(xiàn)x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

(1);(2)λ+μ=0。


解析:

(1)由條件得,所以方程

 (2)易知直線(xiàn)l斜率存在,令

由(1)

代入有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊二模)如圖,已知F(2,0)為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn),AB為橢圓的通徑(過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦),線(xiàn)段OF的垂直平分線(xiàn)與橢圓相交于兩點(diǎn)C、D,且∠CAD=90°.
(I)求橢圓的方程;
(II)設(shè)過(guò)點(diǎn)F斜率為k(k≠0)的直線(xiàn)l與橢圓相交于兩點(diǎn)P、Q.若存在一定點(diǎn)E(m,0),使得x軸上的任意一點(diǎn)(異于點(diǎn)E、F)到直線(xiàn)EP、EQ的距離相等,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓,通徑長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

   (1)求橢圓的方程;

   (2)過(guò)點(diǎn)Q(-1,0)的直線(xiàn)l交橢圓于A,B兩點(diǎn),交直線(xiàn)x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案