(本小題滿分12分)已知函數(shù)上是偶函數(shù),其圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),求的值.

解析試題分析:因為函數(shù)上是偶函數(shù),
所以,又,所以   
于是
由于圖象關(guān)于直線對稱,所以
,即    
因為在區(qū)間上是單調(diào)函數(shù),所以的最小正周期
,即,所以,于是
,    
考點:已知三角函數(shù)模型的應用問題
點評:本題主要考查三角函數(shù)的圖象、單調(diào)性、奇偶性等基本知識,以及分析問題和推理計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)討論的奇偶性;
(2)判斷上的單調(diào)性并用定義證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當A=時,研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) ,且能表示成一個奇函數(shù)和一個偶函數(shù)的和.
(1)求的解析式.
(2)命題:函數(shù)在區(qū)間上是增函數(shù);命題:函數(shù)是減函數(shù),如果命題有且僅有一個是真命題,求實數(shù)的取值范圍.
(3)在(2)的條件下,比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當時,在區(qū)間上為減函數(shù);
(3)當,函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)設函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(II)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

不等式選講已知函數(shù)。
⑴當時,求函數(shù)的最小值;
⑵當函數(shù)的定義域為時,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案