【題目】某同學(xué)使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
【答案】B
【解析】解:∵在輸入的過程中錯將其中一個數(shù)據(jù)105輸入為15
少輸入90,
而 =3
∴平均數(shù)少3,
∴求出的平均數(shù)減去實際的平均數(shù)等于﹣3.
故選B.
【考點精析】認(rèn)真審題,首先需要了解平均數(shù)、中位數(shù)、眾數(shù)(⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù)).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點,直線與交與, ,求, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有三所高校,其學(xué)生會學(xué)習(xí)部有“干事”人數(shù)分別為,現(xiàn)采用分層抽樣的方法從這些“干事”中抽取名進(jìn)行“大學(xué)生學(xué)習(xí)部活動現(xiàn)狀”調(diào)查.
(1)求應(yīng)從這三所高校中分別抽取的“干事”人數(shù);
(2)若從抽取的名干事中隨機(jī)選兩名干事,求選出的名干事來自同一所高校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項為a1= ,且2an+1=an(n∈N+).
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABOA′B′O′中,∠AOB=90°,側(cè)棱OO′⊥面OAB,OA=OB=OO′=2.若C為線段O′A的中點,在線段BB′上求一點E,使|EC|最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的最值;
(Ⅱ)若函數(shù)有極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣ )cos(x﹣ )(x∈R),則下面結(jié)論錯誤的是( )
A.函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
C.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
D.函數(shù)f(x)的圖象是由函數(shù)y= sin2x的圖象向右平移 個單位而得到
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com