P(-1,2)的直線l與線段AB相交,若A(-2,-3),B(3,0),求l的斜率k的取值范圍.

答案:
解析:


提示:

斜率k的大小與正切函數(shù)之間的關系是用傾斜角α來連結的,因此可以由傾斜角α的變化而得出斜率的變化.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
3
2
,且過P(
6
2
2
).
(1)求橢圓E的方程;
(2)已知直線l過點M(-
1
2
,0),且與開口朝上,頂點在原點的拋物線C切于第二象限的一點N,直  線l與橢圓E交于A,B兩點,與y軸交與D點,若
AB
=λ
AN
,
BD
BN
,且λ+μ=
5
2
,求拋物線C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三5月模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線

于點,線段垂直平分線交于點,求點的軌跡的方程;

(3)當P不在軸上時,在曲線上是否存在兩個不同點C、D關于對稱,若存在,

求出的斜率范圍,若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學試卷 題型:解答題

(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直

 

線傾斜角為,原點到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;

(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案