4.已知函數(shù) f( x)=x 3-bx 2+2cx的導(dǎo)函數(shù)的圖象關(guān)于直線 x=2對稱.
(1)求 b的值;
(2)若函數(shù) f( x)無極值,求 c的取值范圍;
(3)若 f( x)在 x=t處取得極小值,求此極小值為 g( t)的取值范圍.

分析 (1)先求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的圖象關(guān)于直線x=2對稱,可知-$\frac{-2b}{6}$=2,從而可求b的值;
(2)函數(shù)f(x)無極值,即導(dǎo)函數(shù)為0的方程至多有一解,從而可求c的取值范圍;
(3)由(2)知,c<6,f'(x)=0有兩個異實根x1,x2,不妨設(shè)x1<x2,則x1<2<x2,易得f(x)在x=x1處取極大值,在x=x2處取極小值,且x2>2,可知函數(shù)g(t)的定義域為(2,+∞),根據(jù)f'(t)=3t2-12t+2c=0得2c=-3t2+12t.從而可得g(t)=f(t)=t3-6t2+(-3t2+12t)t=-2t3+6t2,再利用函數(shù)g(t)在區(qū)間(2,+∞)內(nèi)是減函數(shù),可求函數(shù)g(t)的取值范圍.

解答 解:(1)f'( x)=3 x 2-2 bx+2 c,
∵f'( x)關(guān)于直線 x=2對稱,
∴$\frac{3}$=2,即 b=6.
(2)由(1)知 f( x)=x 3-6 x 2+2 cx,
f'( x)=3 x 2-12 x+2 c=3( x-2)2+2 c-12,
當(dāng)2 c-12≥0,即 c≥6時,f'( x)≥0,此時 f( x)無極值.
(3)當(dāng) c<6時,f'( x)=0有兩個相異實根為 x 1,x 2,
不妨設(shè) x 1<x 2,則 x 1<2<x 2,
當(dāng) x<x 1時,f'( x)>0,f( x)在(-∞,x 1)上單調(diào)遞增,
當(dāng) x 1<x<x 2時,f'( x)<0,f( x)在( x 1,x 2)上單調(diào)遞減,
當(dāng) x>x 2時,f'( x)>0,f( x)在( x 2,+∞)上單調(diào)遞增,
∴f( x)在 x=x 1處取得極大值,在 x=x 2處取得極小值,
所以 t=x 2>2,
∴f'( t)=3 t 2-12 t+2 c=0得
2 c=-3 t 2+12 t,
∴g( t)=f( t)=t 3-6 t 2+(-3 t 2+12 t) t
=-2 t 3+6 t 2,t∈(2,+∞),
而 g'( t)=-6 t 2+12 t=-6 t( t-2)<0,
∴g( t)在(2,+∞)上單調(diào)遞減,
∴g( t)<g(2)=-2•2 3+6-2 2=8,
∴g( t)<8.

點評 本題以導(dǎo)函數(shù)為載體,考查導(dǎo)函數(shù)的性質(zhì),考查利用導(dǎo)數(shù)求函數(shù)的極值,同時考查了函數(shù)的定義域與值域,綜合性強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點.
(Ⅰ)求證:PB∥平面FAC;
(Ⅱ)求三棱錐P-EAD的體積;
(Ⅲ)求證:平面EAD⊥平面FAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$sin(\frac{π}{2}+α)=\frac{1}{3}$,則cos(π-α)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}的前n項和為Sn,已知${a_1}=\frac{1}{2},{S_n}={n^2}{a_n}-n({n-1}),n=1,2,…$
(1)寫出Sn與Sn-1的遞推關(guān)系式(n≥2),并求出S2,S3的值;
(2)求Sn關(guān)于n的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=-x2+ax.
(I)求函數(shù)f(x)的解析式;
(II)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.各項均為正數(shù)的等差數(shù)列{an}中,$3{a_6}-{a_7}^2+3{a_8}=0$,則a7=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,邊長為2的等邊三角形ABC中,D為BC的中點,將△ABC沿AD翻折成直二面角B-AD-C,點E,F(xiàn)分別是AB,AC的中點.
(1)求證:BC∥平面DEF;
(2)求多面體D-BCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,長方體ABCD-A1B1C1D1中,AB=20,BC=13,AA1=12,過點A1D1的平面α與棱AB和CD分別交于點E、F,四邊形A1EFD1為正方形.
(1)在圖中請畫出這個正方形(注意虛實線,不必寫作法),并求AE的長;
(2)問平面α右側(cè)部分是什么幾何體,并求其體積.

查看答案和解析>>

同步練習(xí)冊答案