【題目】已知橢圓與軸負半軸交于,離心率.
(1)求橢圓的方程;
(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與直線相交于點,求的取值范圍及取得最小值時直線的方程.
【答案】(1);(2)的取值范圍是,最小值為,此時直線的方程為.
【解析】
(1)根據(jù)已知條件得出,再由離心率可得出的值,并求出的值,由此可得出所求橢圓的方程;
(2)由題意可知,直線與軸不重合,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,利用弦長公式求出,并求出點的坐標,進而求得,由此可得出的表達式,利用導(dǎo)數(shù)求出的取值范圍,以及取最小值時對應(yīng)的直線方程.
(1)由題有,,,.
因此,橢圓方程為;
(2)當直線與軸重合時,則直線的垂線與直線平行,不合乎題意.
設(shè),將其與曲線的方程聯(lián)立,得.
即.
設(shè)、,則,,
,
將直線與聯(lián)立,得,
.
.
設(shè),構(gòu)造.
在上恒成立,所以在上單調(diào)遞增.
所以,當且僅當,即時等號成立,
所以的取值范圍是,
當取得最小值時,, 此時直線的方程為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E為CD中點,以AE為折痕把△ADE折起,使點D到達點P的位置(P平面ABCE).
(1)證明:AE⊥PB;
(2)若直線PB與平面ABCE所成的角為,求二面角A﹣PE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)的取值范圍;
(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足
?若存在,求出的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到兩點,的距離之和為4,點在軸上的射影是C,.
(1)求動點的軌跡方程;
(2)過點的直線交點的軌跡于點,交點的軌跡于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是直角梯形,,,,,,.以為折痕將折起,使點到達的位置,且,如圖2.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求的單調(diào)區(qū)間;
(2)若在處取得極值,直線與的圖象有三個不同的交點,求的取值范圍.若的極大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“三分損益法”是古代中國發(fā)明制定音律時所用的方法,其基本原理是:以一根確定長度的琴弦為基準,取此琴強長度的得到第二根琴弦,第二根琴弦長度的為第三根琴弦,第三根琴弦長度的為第四根琴弦.第四根琴弦長度的為第五根琴弦.琴弦越短,發(fā)出的聲音音調(diào)越高,這五根琴弦發(fā)出的聲音按音調(diào)由低到高分別稱為“官、商、角(jué)、微(zhǐ)、羽”,則“角"和“徵”對應(yīng)的琴弦長度之比為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率為。
(1)求橢圓的標準方程;
(2)設(shè)橢圓的左,右焦點分別為,左,右頂點分別為,,點,,為橢圓上位于軸上方的兩點,且,記直線,的斜率分別為,,若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com