【題目】已知函數(shù)f(x)=[ax2﹣(2a+1)x+a+2]ex(a∈R).
(1)當(dāng)a≥0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)g(x)= ,當(dāng)a=1時(shí),若對(duì)任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.
【答案】
(1)解:f′(x)=(ax2﹣x﹣a+1)ex=(ax+a﹣1)(x﹣1)ex,
a=0時(shí),f′(x)=﹣(x﹣1)ex,
∴當(dāng)x>1時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)x<1時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
當(dāng)a>0時(shí),f′(x)=a (x﹣1)ex,
令 =1,解得a= .
當(dāng)a= 時(shí), ≥0,函數(shù)f(x)在R上單調(diào)遞增;
當(dāng) 時(shí), >1,x∈(﹣∞,1)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增; ,f′(x)<0,函數(shù)f(x)單調(diào)遞減; ,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
當(dāng)a 時(shí), <1,x∈(﹣∞, )時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增; ,f′(x)<0,函數(shù)f(x)單調(diào)遞減;x∈(1,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上可得:當(dāng)a=0時(shí),當(dāng)x>1時(shí),函數(shù)f(x)單調(diào)遞減;當(dāng)x<1時(shí),函數(shù)f(x)單調(diào)遞增.
當(dāng)a= 時(shí),函數(shù)f(x)在R上單調(diào)遞增;
當(dāng) 時(shí),x∈(﹣∞,1)時(shí),函數(shù)f(x)單調(diào)遞增; ,函數(shù)f(x)單調(diào)遞減; ,函數(shù)f(x)單調(diào)遞增.
當(dāng)a 時(shí),x∈(﹣∞, )時(shí),函數(shù)f(x)單調(diào)遞增; ,函數(shù)f(x)單調(diào)遞減;x∈(1,+∞)時(shí),函數(shù)f(x)單調(diào)遞增.
(2)解:當(dāng)a=1時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,2)上單調(diào)遞增.
對(duì)任意x1∈(0,2),都有f(x1)≥f(1)=e.
又對(duì)任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),
∴e≥g(x2),即x2∈(1,2)時(shí)有解,
g(x2)= ,∴存在x2∈(1,2),使得 ≤e,即存在x2∈(1,2),使得 .
令h(x)= ,x∈(1,2),h′(x)= ,
令h′(x)=0,解得x= ,
當(dāng)x∈ 時(shí),h′(x)>0,函數(shù)h(x)單調(diào)遞增;當(dāng)x∈ 時(shí),h′(x)<0,函數(shù)h(x)單調(diào)遞減.
∴當(dāng)x= 時(shí),h(x)的最大值為 =1,
綜上可得:實(shí)數(shù)b的取值范圍是(﹣∞,1].
【解析】(1)f′(x)=(ax2﹣x﹣a+1)ex=(ax+a﹣1)(x﹣1)ex , 對(duì)a分類討論:當(dāng)a=0時(shí),f′(x)=﹣(x﹣1)ex , 即可得出單調(diào)性;當(dāng)a>0時(shí),f′(x)=a (x﹣1)ex , 令 =1,解得a= .當(dāng)a= 時(shí),當(dāng) 時(shí),當(dāng)a 時(shí),比較 與1的大小關(guān)系即可得出單調(diào)性;(2)當(dāng)a=1時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,2)上單調(diào)遞增.對(duì)任意x1∈(0,2),都有f(x1)≥f(1)=e.又對(duì)任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),e≥g(x2),即x2∈(1,2)時(shí)有解,g(x2)= ,即存在x2∈(1,2),使得 .令h(x)= ,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當(dāng)x>0時(shí), 恒成立,求整數(shù)k的最大值;
(3)試證明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n﹣3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x﹣2ln2. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若k為差數(shù),當(dāng)x>0時(shí),(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)為f(x)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用 (單位:元)關(guān)于月用電量 (單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的占80%,求 的值;
(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x﹣ )在[0, ]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱柱ABC﹣A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1 , A1A的中點(diǎn).
(1)求證:A1D∥平面B1CE;
(2)設(shè)M是的中點(diǎn),N在棱AB上,且BN=1,P是棱AC上的動(dòng)點(diǎn),直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請(qǐng)求出 的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)單調(diào)遞增區(qū)間;
(2)△ABC中,角A,B,C的對(duì)邊a,b,c滿足 ,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】)已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x﹣y=0平行的切線,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=f(x)+ ,若g(x)有極大值點(diǎn)x1 , 求證: >a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11 , S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn= ,數(shù)列{bn}的前n 項(xiàng)和為Tn , 求 的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com