已知向量,,設函數(shù),.
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中,分別是角的對邊,若的面積為,求的值.
(Ⅰ)的最小正周期為 ,的最大值為5;(Ⅱ) .

試題分析:(Ⅰ)求的最小正周期與最大值,首先須求出的解析式,由已知向量,,函數(shù),可將代入,根據數(shù)量積求得,進行三角恒等變化,像這一類題,求周期與最大值問題,常常采用把它化成一個角的一個三角函數(shù),即化成,利用它的圖象與性質,,求出周期與最大值,本題利用兩角和與差的三角函數(shù)公式整理成,從而求得的最小正周期與最大值;(Ⅱ)在中,分別是角的對邊,若的面積為,求的值,要求的值,一般用正弦定理或余弦定理,本題注意到,由得,可求出角A的值,由已知的面積為,可利用面積公式,求出,已知兩邊及夾角,可利用余弦定理求出,解此類題,主要分清邊角關系即可,一般不難.
試題解析:(Ⅰ),∴的最小正周期為 ,的最大值為5.
(Ⅱ)由得,,即,∵,∴,
,又,即,
,由余弦定理得,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知α,β為銳角,且sinα=,tan(α-β)=-.求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中,已知內角,邊.設內角,周長為
(1)求函數(shù)的解析式和定義域; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)當時,求的最大值和最小值;
(II)設的內角所對的邊分別為,且,若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中,已知內角,邊.設內角,的面積為.
(1)求函數(shù)的解析式和定義域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值和最小值;
(2)若,其中 求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)上有兩個零點,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,且,則  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,,,則面積為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案