【題目】某景區(qū)的各景點從2009年取消門票實行免費開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構,促進了該市旅游向觀光、休閑、會展三輪驅(qū)動的理想結(jié)構快速轉(zhuǎn)變.下表是從2009年至2018年,該景點的旅游人數(shù)(萬人)與年份的數(shù)據(jù):

1

2

3

4

5

6

7

8

9

10

旅游人數(shù)(萬人)

300

283

321

345

372

435

486

527

622

800

該景點為了預測2021年的旅游人數(shù),建立了的兩個回歸模型:

模型①:由最小二乘法公式求得的線性回歸方程

模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.

1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個位,精確到001).

2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關指數(shù),并選擇擬合精度更高、更可靠的模型,預測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個位).

回歸方程

30407

14607

參考公式、參考數(shù)據(jù)及說明:

①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.②刻畫回歸效果的相關指數(shù);③參考數(shù)據(jù):,

55

449

605

83

4195

900

表中

【答案】(1);(2)回歸模型②的擬合效果更好,987

【解析】

1)對取對數(shù),得,設,,先建立關于的線性回歸方程.

2)根據(jù)所給數(shù)據(jù)計算,,即可判斷那種模型的擬合效果更優(yōu),再代入數(shù)據(jù)計算可得.

解:(1)對取對數(shù),得,設,先建立關于的線性回歸方程.

,

模型②的回歸方程為.

2)由表格中的數(shù)據(jù),有30407>14607,即,

,,模型①的相關指數(shù)小于模型②的

說明回歸模型②的擬合效果更好.

2021年時,

預測旅游人數(shù)為(萬人).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個公共點,求C1的普通方程;

2)已知點A0,1),若曲線C1方程中的參數(shù)是t,0απ,且C1C2相交于P,Q兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐SABCD中,MSB的中點,ABCD,BCCD,且ABBC2,CDSD1,又SD⊥面SAB

1)證明:CDSD

2)證明:CM∥面SAD;

3)求四棱錐SABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則方程恰有2個不同的實根,實數(shù)取值范圍__________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)設是曲線上的一個動點,當時,求點到直線的距離的最大值;

(2)若曲線上所有的點均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,證明:;

(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某面包店隨機收集了面包種類的有關數(shù)據(jù),經(jīng)分類整理得到下表:

面包類型

第一類

第二類

第三類

第四類

第五類

第六類

面包個數(shù)

90

60

30

80

100

40

好評率

0.6

0.45

0.7

0.35

0.6

0.5

好評率是指:一類面包中獲得好評的個數(shù)與該類面包的個數(shù)的比值.

1)從面包店收集的面包中隨機選取1個,求這個面包是獲得好評的第五類面包的概率;

2)從面包店收集的面包中隨機選取1個,估計這個面包沒有獲得好評的概率;

3)面包店為增加利潤,擬改變生產(chǎn)策略,這將導致不同類型面包的好評率發(fā)生變化.假設表格中只有兩類面包的好評率數(shù)據(jù)發(fā)生變化,那么哪類面包的好評率增加0.1,哪類面包的好評率減少0.1,使得獲得好評的面包總數(shù)與樣本中的面包總數(shù)的比值達到最大?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓a1.

)求直線y=kx+1被橢圓截得的線段長(用ak表示);

)若任意以點A0,1)為圓心的圓與橢圓至多有3個公共點,求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習冊答案