【題目】一批材料可以建成100m長的圍墻,現(xiàn)用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場地,中間隔成3個面積相等的小矩形(如圖),則圍成的矩形場地的最大總面積為(圍墻厚度忽略不計)m2

【答案】625
【解析】解:設(shè)每個小矩形的高為am,則長為b= (100﹣4a)m,記面積為Sm2
則S=3ab=a(100﹣4a)=﹣4a2+100a=﹣4(a﹣ 2+625(0<a<25)
∴當a=12.5時,Smax=625(m2
∴所圍矩形面積的最大值為625m2
所以答案是625.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應(yīng)用的相關(guān)知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)對于任意實數(shù)x,不等式sin x+cos x>m恒成立,求實數(shù)m的取值范圍;

(2)存在實數(shù)x,不等式sin x+cos x>m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.

(1)設(shè)每盤游戲獲得的分數(shù)為,求的分布列;

(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩個容器,甲容器容量為,滿純酒精,乙容器容量為,其中裝有體積為的水(:單位: ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過程中溶液體積變化忽略不計.設(shè)經(jīng)過次操作之后,乙容器中含有純酒精單位: ),下列關(guān)于數(shù)列的說法正確的是( )

A. 時,數(shù)列有最大值

B. 設(shè),則數(shù)列為遞減數(shù)列

C. 對任意的,始終有

D. 對任意的,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選課意向進行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.

圖中,課程為人文類課程,課程為自然科學(xué)類課程.為進一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組”).

(Ⅰ)在“組”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)某地舉辦自然科學(xué)營活動,學(xué)校要求:參加活動的學(xué)生只能是“組”中選擇

程或課程的同學(xué),并且這些同學(xué)以自愿報名繳費的方式參加活動. 選擇課程的學(xué)生中有人參加科學(xué)營活動,每人需繳納元,選擇課程的學(xué)生中有人參加該活動,每人需繳納元.記選擇課程和課程的學(xué)生自愿報名人數(shù)的情況為,參加活動的學(xué)生繳納費用總和為元.

①當時,寫出的所有可能取值;

②若選擇課程的同學(xué)都參加科學(xué)營活動,求元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )與軸交于, 兩點, 為橢圓的左焦點,且是邊長為2的等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于, 兩點,點關(guān)于軸的對稱點為不重合),則直線軸交于點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標志性建筑,某班同學(xué)準備測量觀光塔的高度單位:米),如圖所示,垂直放置的標桿的高度米,已知 .

1)該班同學(xué)測得一組數(shù)據(jù): ,請據(jù)此算出的值;

2該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當調(diào)整標桿到觀光塔的距離單位:米),使的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?

查看答案和解析>>

同步練習(xí)冊答案