在等差數(shù)列{an}中,若a1,a10是方程3x2-2x-6=0的兩根,則a4+a7=
 
分析:由韋達(dá)定理也求出a1+a10=
2
3
,再由等差數(shù)列的性質(zhì)得a4+a7=a1+a10即可求出結(jié)果.
解答:解由題意知,a1+a10=
2
3
,
則由等差數(shù)列的性質(zhì)得:
a4+a7=a1+a10=
2
3

故答案為
2
3
點(diǎn)評(píng):本題主要考查等差數(shù)列的性質(zhì),即等差中項(xiàng)的推廣性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項(xiàng)的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個(gè)根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案